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Motivation

Numerical methods for rapidly oscillating coefficients may fail
to converge because of the resonance phenomena between the
numerical mesh and the oscillating pattern of coefficients.

This issue has to be taken into account carefully when dealing
with numerics for homogenization problems.

Optimal design problems often develop oscillating patterns.

It is then natural to raise the issue of whether these
resonances may also affect the convergence of numerical
algorithms for optimal design.

Generally speaking, there is a big gap between the existing
theory for continuum analytical methods for optimal design
and the numerical practice.
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Motivation

Numerical approximation methods for PDEs with rapidly
oscillating coefficients.

There is an extensive literature in which ideas and methods of
classical Numerical Analysis (finite differences and elements)
and Homogenization Theory are combined:
Bensoussan-Lions-Papanicolaou, Sanchez-Palencia, Allaire,
Cioranescu-Donato,....
B. Engquist [1997,1998], Y. Efendiev, Th. Hou, X.Wu
[1998,1999, 2002,2004], M. Matache, Babuška, Ch. Schwab
[2000,2002], G. Allaire, C. Conca[1996], C. Conca, S.
Natesan, M. Vanninathan [2001,2005], P. Gerard, P.A.
Markowich, N. J. Mauser, F. Poupaud [1997], Kozlov [1986],
Piatnitski, Remi [2001], ...
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Some common facts:

Multiscale analysis: Two scales are involved: ε for the size of
the microstructure and h for that of the numerical mesh;

As usual, three different regimes: h << ε, h ∼ ε, ε << h;

Slow convergence of standard approximations (finite elements,
finite differences): h << ε.

Resonances may occur when ε ∼ h

Convergence may be accelerated when the Galerkin method is
built on bases adapted to the “topography” of the oscillating
medium.
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Two different issues:

Compute an efficient numerical approximation of the solution
in the highly heterogeneous medium;
Homogenization theory is a tool that helps doing that.

Analyze the limit behavior as the characteristic size of the
medium and the mesh-size tend to zero.

BUT A COMPLETE UNDERSTANDING OF THIS COMPLEX
ISSUE NEEDS BOTH QUESTIONS TO BE ADDRESSED.
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Convergence of the standard numerical methods improves when
the numerical mesh samples the oscillating medium in an “ergodic
way”:
B. Engquist, Th. Hou [1989,1993], M.Avellaneda, Th. Hou, G.
Papanicolaou [1991], Babuška, Osborn [2000].
In other words:

According to classical homogenization theory: uε converges to
the homogenized solution u∗ as ε→ 0;

This is not necessarily the case for the numerical solution uεh
as both h, ε→ 0.

Under some ergodicity condition (ε/h = irrational) uεh → u∗.
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In 1 we explain what is going on when ε/h = rational and how,
using diophantine approximation, one can recover convergence for
irrational ratios.

1R. Orive and E. Z. Finite difference approximations of homogenization
problems for elliptic equations. Multiscale Modeling and Simulation: A SIAM
Interdisciplinary Journal, 4 (1) (2005) pp. 36-87.
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Problem formulation:

We consider the periodic elliptic equation associated to the
following rapidly oscillating coefficients:

Aε = − ∂

∂xk

(
aεk`(x)

∂

∂x`

)
,

with aεk`(x) = ak` (x/ε), and ak` satisfying
akl ∈ L∞# (Y ) are Y -periodic, where Y =]0, 1[N ,

∃α > 0 s.t.
N∑

k,`=1

akl(y)ηk η̄l ≥ α|η|2, ∀η ∈ CN ,

akl = alk ∀l , k = 1, ...,N.

Homogenization: u∗ limit of the solutions of Aεuε = f , satisfies

A∗u∗ = − ∂

∂xk

(
a∗k`

∂u∗

∂x`

)
= f .

Enrique Zuazua Optimal design and numerics



Motivation Numerics for Homogenization Numerics for some (toy) optimal design problems Concluding remarksMotivation 1− d Bloch-c Bloch-d Conclusion

Discretization: Let h = (h1, . . . , hd) with

hi =
1

ni
with ni ∈ N.

The following is a natural numerical approximation scheme by
finite-differences:

d∑
i ,j=1

−∇−h
i

[
aεij(x(i , j))∇+h

j uεh(x)
]

= f (x), x ∈ Γh,

where Γh is the numerical mesh and

x(i , j) = x +
1

2
hiei + (1− δij)

1

2
hjej .
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Classical Numerical Analysis ensures

||uεh − u∗|| ≤ c
h

ε
+ c ′ε.

Note that, in particular, no convergence is guaranteed for h ∼ ε.
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Convergence under ergodicity:

In Avellaneda, Hou, Papanicolaou [1991] for the 1− d problem
with Dirichlet conditions the following was proved:

Theorem

If f is continuous and bounded in (0, 1), then

lim
ε,h→0

||uεh − u∗||∞ → 0,

for sequences h, ε such that h/ε = r with r irrational.

Our goal:

Analyze the behavior when ε/h=rational;

Reprove the same result as in the Theorem above using
diophantine approximation.

Do it using explicit Bloch wave representations of solutions.
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More precisely: what is the behavior of uεh when

h

ε
=

q

p
, with q, p ∈ N, H.C.F.(q, p) = 1,

and h→ 0????????????.
In this case the numerical mesh, despite of the fact that h→ 0,
only samples a finite number of values in each periodicity cell of
the coefficient a(x). Thus, it is impossible that the numerical
schemes recovers the continuous homogenized limit u∗. One rather
expects a discrete homogenized limit u∗q/p such that

u∗q/p 6= u∗;

u∗q/p → u∗ as q/p → r , with r irrational.
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Main 1− d result

Theorem

Assume that a = a(x) is Lipschitz, 1-periodic and α ≤ a(x) ≤ β.
Let {uεh(xi )}ni=0 the approximation of uε with h/ε = q/p. Then,

||uεh − u∗q/p||∞ ≤ c hp

Moreover, u∗q/p is a discrete Fourier approximation with mesh-size
h of the solution of −a∗p

∂2v

∂x2
(x) = f (x), 0 < x < 1,

v(0) = v(1) = 0,

with a∗p =

(
1
p

p∑
j=1

1
a((j+1/2)/p)

)−1

.
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Recall that the continuous homogenized solution u∗ is a solution of
the same Dirichlet problem but with a continuous effective
coefficient a∗ defined as

a∗ =

(∫ 1

0
(1/a(x))dx

)−1

.

Furthermore,

||u∗q/p − u∗||∞ ≤ c ′
1

p
.

In conclusion,
||uεh − u∗||∞ ≤ c hp + c ′/p

where c and c ′ depend on α, β, ||a′||∞ and ||f ||∞.
Note that, this estimate, together with diophantine approximation
results, allows to recover convergence for h/ε irrational.
A similar result holds in the multi-dimensional case.
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Continuous Bloch wave decomposition

Following the presentation by C. Conca & M. Vanninathan2:

Spectral problem family with parameter η ∈ Y ′ = [−1/2, 1/2[d :

Aψ(·; η) = λ(η)ψ(·; η) in Rd ,

ψ(·; η) is (η,Y )-periodic, i.e., ψ(y + 2πm; η) = e2πim·ηψ(y ; η).

ψ(y ; η) = e iy ·ηφ(y ; η), φ being Y -periodic in the variable y .

2C. Conca and M. Vanninathan, Homogenization of periodic structures
via Bloch decomposition, SIAM J. Appl. Math., 57 (1997), pp. 1639–1659.
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A discrete sequence of eigenvalues with the following properties
exists: {

0 ≤ λ1(η) ≤ · · · ≤ λn(η) ≤ · · · → ∞,
λm(η) is a Lipschitz function of η ∈ Y ′, ∀m ≥ 1.

λ2(η) ≥ λ(N)
2 > 0, ∀η ∈ Y ′,

where λ
(N)
2 > 0 is the second eigenvalue of A in the cell Y with

Neumann boundary conditions.
The eigenfunctions ψm(·; η) and φm(·; η), form orthonormal bases
in the subspaces of L2

loc(Rd) of (η,Y )-periodic and Y -periodic
functions, respectively.
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λεm(ξ) = ε−2λm(εξ), φεm(x ; ξ) = φm(
x

ε
; εξ).

Given f , the mth Bloch coefficient of f at the ε scale:

f̂ εm(k) =

∫
Y

f (x)e−ik·xφεm(x ; k)dx ∀m ≥ 1, k ∈ Λε,

Λε = {k = (k1, . . . , kd) ∈ Zd : [−1/2ε] + 1 ≤ ki ≤ [1/2ε]}.

f (x) =
∑
k∈Λε

∑
m≥1

f̂ εm(k)e ik·xφεm(x ; k).

∫
Y

|f (x)|2dx =
∑
k∈Λε

∑
m≥1

|f̂ εm(k)|2.

λεm(k)ûεm(k) = f̂ εm(k), ∀m ≥ 1, k ∈ Λε.
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uε(x) =
∑
k∈Λε

∞∑
m=1

f̂ εm(k)

λm(εk)/ε−2
e ik·xφεm(x ; k).

uε(x) ∼ ε2
∑
k∈Λε

f̂ ε1 (k)

λ1(εk)
e ik·xφε1(x ; k).

Enrique Zuazua Optimal design and numerics



Motivation Numerics for Homogenization Numerics for some (toy) optimal design problems Concluding remarksMotivation 1− d Bloch-c Bloch-d Conclusion

c1|η|2 ≤ λ1(η) ≤ c2|η|2, ∀η ∈ Y ′,

λ1(0) = ∂kλ1(0) = 0, k = 1, . . . ,N,

∂2
k`λ1(0) = 2a∗k`, k , ` = 1, . . . ,N,

where a∗k` are the homogenized coefficients.

η ∈ Bδ → φ1(y ; η) ∈ L∞ ∩ L2
#(Y ) is analytic,

φ1(y ; 0) = (2π)−
d
2 .

f̂ ε1 (k) ∼ f̂k

ûε1(k) ∼ û∗k as ε→ 0,

uε(x) ∼
∑
k∈Λε

f̂ ε1 (k)

λ1(εk)/ε−2
e ik·xφε1(x ; k) ∼

∑
k∈Zd

f̂ k

a∗ijkikj
e ik·x

which is the solution of the homogenized problem in its Fourier
representation.
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Discrete Bloch waves

In 1− d one can use the explicit representation formula for
discrete solutions. But, of course, this is impossible for
multi-dimensional problems.

In 1− d the homogenized coefficient a∗ can be computed
explicitly as above. But in several space dimensions, the
homogenized coefficients depend on test functions χk that are
defined by solving elliptic problems on the unit cell.

In several space dimensions Bloch wave expansions can be
used to derive explicit representation formulas and to prove
homogenization. This is the method we shall employ to derive
our results.
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Explicit 1− d computations.

{
−aεi uεi+1 + (aεi + aεi−1)uεi − aεi−1uεi−1 = h2fi , 1 ≤ i ≤ n − 1,

uε0 = b, uεn = c .

Therefore,

uεi = b + Uε,h
0

i∑
j=1

h

aεj
−

i∑
j=1

h

aεj

j∑
k=1

hfk 1 ≤ i ≤ n − 1,

with Uε,h
0 = aε,∗h (c − b) + aε,∗h

n−1∑
j=1

(
1

aεj

j∑
k=1

h2fk

)
,

and aε,∗h =

n−1∑
j=0

h

aεj

−1

.

Using that aεp+i = aεi , aε,∗h → a∗p ( with explicit estimates).
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DISCRETE BLOCH WAVE METHOD: 1− d

Since h/ε = q/p, aε(x + ph) = aε(x), x ∈ Γh

Γp
h = {x = zh : 0 ≤ z < p, z ∈ Z}

f (x , k) = hp
1
2

∑
z∈Γhp

f (x + z)e−i2πk·(x+z), k ∈ Λqε,

Λqε =

{
k ∈ Zd , such that

[
−1

2qε

]
+ 1 ≤ k ≤

[
1

2qε

]}
.

The discrete Bloch waves are defined by the family of eigenvalue
problems:

−∇−h
[
aε (x)∇+h(e i2πx ·ξφεh(x , ξ))

]
= λ(ξ)e ix ·ξφεh(x , ξ), x ∈ Γp

h,
φεh(x , ξ) is ph-periodic in x , i.e., φεh(x + ph, ξ) = φεh(x , ξ).
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There exist a sequence λ1(ξ), ..., λp(ξ) ≥ 0 and their
eigenfunctions {φεh,m(x , ξ)}pm=1.

λm(ξ) ≥ c

ε2q2
> 0, m ≥ 2

ξ ∈ Bδ 7→ (λ1(ξ), φ1(·, ξ)) ∈ R× Cp is analytic.

φ1(y , 0) = p−1/2

λ1(0) = ∂λ1(0) = 0, ∂2λ1(0) =

(
1

p

p∑
i=1

1

a ((i + 0.5)/p))

)−1

.
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This method allows obtaining sharp estimates on both ||uεh − u∗q/p||
and ||u∗ − u∗q/p||.
Indeed,

All solutions involved can be represented in a similar form by
means of Bloch wave expansions;

The contribution of Bloch components m ≥ 2 is uniformly
negligible;

The dependence of the first Bloch component, both in what
concerns the eigenvalue and eigenfunction, can be estimated
very precisely in terms of the various parameters.
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Conclusion

Discrete Bloch waves allow getting a complete representation
formula for the numerical approximations when h/ε is rational.

This allows deriving the discrete homogenized solution with
convergence rates.

The discrete homogenized problem has the same structure as
the continuous one but with different effective coefficients.

The distance between the discrete and continuous effective
coefficients can be estimated as well.

This allows recovering, with convergence rates, results on
numerical homogenization under ergodicity conditions.
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An example

The finite element approximation to 2− d optimal design problems
for the Dirichlet Laplacian. 3 4

3V. S̆veràk, On optimal shape design, JMPA, 72, 1993, pp. 537-551.
4D. Chenais and E. Z. Finite Element Approximation of 2D Elliptic Optimal

Design, JMPA, 85 (2006), 225-249.
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A model for mixtures

For a given bounded open set Ω of RN , N ≥ 1, consider the
optimization problem 5

(P)

 Find ω0 ∈ U such that

J (ω0) = min
ω∈U
J (ω),

with
U = {ω ⊂ Ω : ω measurable , |ω| ≤ κ} ,

J (ω) =

∫
ω

F1(x , uω,∇uω) dx +

∫
Ω\ω

F2(x , uω,∇uω) dx ,

where F1,F2 : Ω× R× RN → R, the source term f : Ω→ R and
the material constants α and β are given, and

uω ∈ H1
0 (Ω); −div

(
(αχω + β(1− χω))∇uω

)
= f in Ω. (1)

5J. Casado-D́ıaz, C. Castro, M. Luna-Laynez and E. Z., Numerical
approximation of a one-dimensional elliptic optimal design problem, SIAM J.
Multiscale Analysis, to appear.
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(P) has not a solution in general → Relaxation. 6 7

Replace the characteristic function χω by a measurable
function θ with values in [0, 1].

Replace the function (αχω + β(1− χω)) in the elliptic PDE
by a matrix function A in the set K(θ) of matrices
constructed by homogenization mixing the materials α and β
with respective proportions θ and 1− θ.

The corresponding state is denoted by uθ,A.

Replace the cost functional J by another one of the form

Ĵ (θ,A) =

∫
Ω

H(x , uθ,A,∇uθ,A,A∇uθ,A, θ) dx ,

where H is a function known explicitly only in a few cases
(N = 1, Fi (x , s, ξ) = |ξ|2, . . .).

6F. Murat. Un contre-example pour le problème du contrôle dans les
coefficients. C.R.A.S Sci. Paris A 273 (1971), 708-711.

7F. Murat, L. Tartar. H-convergence. In Topics in the Mathematical
Modelling of Composite Materials, ed. by L. Cherkaev, R.V. Kohn. Progress in
Nonlinear Diff. Equ. and their Appl., 31, Birkaüser, Boston, 1998, 21-43.
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In practice it would be very natural to:

Discretize (by FEM, for instance) the problem using finite
element approximations of the PDE and the functional under
consideration.

Search for the discrete optimal shape design
(finite-dimensional problem).

“Hope” that, as the mesh-size tends to zero, the discrete
optimal shape will converge to the continuous one.

Enrique Zuazua Optimal design and numerics
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CONTINUOUS SOLUTION OF THE OPTIMAL
DESIGN PROBLEM

+

CONVERGENT ALGORITHM FOR SOLVING THE
PDE
=

CONVERGENT ALGORITHM FOR OPTIMAL
SHAPES?????

Enrique Zuazua Optimal design and numerics
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NOT NECESSARILY !!!!

E. Z., SIAM Review, 47 (2) (2005), 197-243.
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Two (main) strategies for discretization:

Discrete approach: Discretize directly the original problem.

Continuous approach: Discretize the relaxed formulation.

We analyze the 1− d problem N = 1 showing that the continuous
approach provides a better approximation and a faster convergence
rate with a lower computational cost.

Enrique Zuazua Optimal design and numerics
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Both approaches, discrete and continuous, were successfully
developed in 8 but no convergence rates were obtained.

8J. Casado-D́ıaz, J. Couce-Calvo, M. Luna-Laynez, J.D. Mart́ın-Gómez.
Optimal design problems for a non-linear cost in the gradient: numerical
results. Applicable Anal. 87 (2008), 1461-1487.
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Theorem

A relaxation of problem (P) is given by

(P̂) Find θ0 ∈ Û such that Ĵ (θ0) = min
θ∈Û
Ĵ (θ),

Û =

{
θ ∈ L∞(0, 1; [0, 1]) :

∫ 1

0
θdx ≤ κ

}
,

and Ĵ : Û −→ R is defined by

Ĵ (θ) =

∫ 1

0

(
θF1

(
x , uθ,

Mθ

α

duθ
dx

)
+ (1− θ)F2

(
x , uθ,

Mθ

β

duθ
dx

))
dx ,

for every θ ∈ Û , with Mθ =
(
θ
α + 1−θ

β

)−1
and uθ ∈ H1

0 (0, 1) the

solution of

− d

dx

(
Mθ

duθ
dx

)
= f in (0, 1).
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For r > 0, we consider a partition Qr = {yk}mr
k=0 of [0, 1], with

r = max
1≤k≤mr

(yk − yk−1) .

We now approximate both optimal design problems, the original
and the relaxed one, but we do it in a stratified manner, in two
levels, increasing complexity and making the method better
adapted to simulation practices.

Approximation level #1: Continuous PDE but discrete
control sets or coefficients.

Approximation level #2: Discrete approximation of PDE
and also discrete control sets or coefficients.
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Discrete Approach, Level #1:

(P r ) Find ωr
0 ∈ U r such that J (ωr

0) = min
ω∈U r

J (ω)

where

U r =
{
ω ∈ U : ∃J ⊂ {1 . . . ,mr} such that ω = ∪k∈J(yk−1, yk)

}
.

Continuous Approach, Level #1:

(P̂ r ) Find θr
0 ∈ Û r such that Ĵ (θr

0) = min
θ∈Û r
Ĵ (θ)

where

Û r =
{
θ ∈ Û : θ constant in every (yk−1, yk)

}
.
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Theorem

[Discrete Approach, Level #1]
Problem (P r ) has a solution for every r > 0, and we have

0 ≤ min
ω∈U r

J (ω)− inf
ω∈U
J (ω) ≤ Cr

1
2 .

Moreover, if for some integer ` ≥ 1, we have that f belongs to
W `,1(0, 1) and Fi (x , s, ξ) is independent of s and belong to

C `,1
loc ([0, 1]× R), then we have

0 ≤ min
ω∈U r

J (ω)− inf
ω∈U
J (ω) ≤ Cr

`+1
`+2 .
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Theorem

[Continuous Approach, Level #1]
Problem (P̂ r ) has a solution for every r > 0, and we have

0 ≤ min
θ∈Û r
Ĵ (θ)− inf

ω∈U
J (ω) = o(r).

Moreover, if problem (P̂) has a solution θ0 in BV (0, 1), then

0 ≤ min
θ∈Û r
Ĵ (θ)− inf

ω∈U
J (ω) ≤ Cr 2.
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Remark

The convergence rate for (P̂ r ) is better than the one for (P r ).

These convergence rates are sharp.

Problem (P̂ r ) is simpler to solve because the set of controls
Û r is convex.

This is true even in those cases where problem (P) has a
classical solution, and therefore a relaxation is not necessary.
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Now we consider a full discretization of problem (P), where not
only we discretize the set of controls but we also approximate the
state equation and the cost functional.

For h > 0, we set r =
√

h and take two partitions Qh = {xi}nh
i=0,

Qr = {yk}mr
k=0 of [0, 1], with Qr ⊂ Qh and

h = max
1≤i≤nh

(xi − xi−1), r = max
1≤k≤mr

(yk − yk−1),

and we define

W h = {v ∈ C 0
0 ([0, 1]) : v is affine on every (xi−1, xi )}.
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For θ ∈ Û , constant in every (xi−1, xi ), we define ũθ ∈W h by∫ 1

0
Mθ

dũθ
dx

dv

dx
dx =

∫ 1

0
fvdx , ∀v ∈W h

and

Ĵ h(θ) =

∫ 1

0

(
θF1

(
x , ũθ,

Mθ

α

dũθ
dx

)
+ (1− θ)F2

(
x , ũθ,

Mθ

β

dũθ
dx

))
dx

For ω ∈ U , with ω = ∪i∈J(xi−1, xi ), J ⊂ {1 . . . , nh}, we denote
ũω = ũχω and define

J h(ω) =

∫
ω

F1

(
x , ũω,

dũω
dx

)
dx +

∫
(0,1)\ω

F2

(
x , ũω,

dũω
dx

)
dx
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Discrete Approach – Full Discretization:

(Ph
c ) Find ωh

0 ∈ Uh such that J h(ωh
0 ) = min

ω∈Uh
J h(ω)

where

Uh =
{
ω ∈ U : ∃J ⊂ {1 . . . , nh} such that ω = ∪i∈J(xi−1, xi )

}
Continuous Approach – Full Discretization:

(P̂h
c ) Find θ0 ∈ Û

√
h such that Ĵ h(θ0) = min

θ∈Û r
Ĵ h(θ)

where

Û r =
{
θ ∈ Û : θ constant in every (yk−1, yk)

}
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Theorem

[Discrete approach]
Problem (Ph

c ) has a solution for every h > 0. Moreover, every
solution ω0 satisfies

0 ≤ J (ω0)− inf
ω∈U
J (ω) ≤ C h

1
2 .

Moreover, if for some nonnegative integer `, we have that f
belongs to W `,1(0, 1) and F (x , s, ξ) is independent of s and belong

to C `,1
loc ([0, 1]× R), then we have

0 ≤ J (ω0)− inf
ω∈U
J (ω) ≤ Ch

`+1
`+2 .
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Theorem

[Continuous approach]
Problem (P̂h

c ) has a solution for every h > 0. Moreover, if we
assume that exists an optimal control of bounded variation for (P̂),
then every θ0 solution of (P̂h

c ) satisfies

0 ≤ J (θ0)− inf
ω∈U
J (ω) ≤ C h.
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Remark

In the discrete approach, based on the unrelaxed formulation,
the PDE and the control are discretized in the same fine grid
of size h.

The continuous full discretization, implemented on the relaxed
version, constitutes a bigrid strategy: The PDE is discretized
in the fine grid of size h while the control is discretized in the
coarse one of size

√
h. And it gives a faster convergence with

a lower computational cost !
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The methods of proof combine:

Fine properties on the dependence of the 1− d elliptic
problem on its coefficients.

Convergence properties of the FEM.

Oscillatory constructions of bang-bang oscillating functions
towards relaxation.
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Bang-bang postprocessing of relaxed numerical shapes

Relaxed numerical coefficient profiles can be approximated by
classical piecewise constant bang-bang functions, repredsenting
pure mixtures.
Assume f ∈ L∞(0, 1) and

θ =
mr∑
k=1

tkχ(yk−1,yk ) ∈ Û r ,

with tk ∈ [0, 1] for every k ∈ {1, . . . ,mr}. Set

jk =

[
yk − yk−1

r 2

]
+ 1, sk =

yk − yk−1

jk
, ∀ k ∈ {1, . . . ,mr},

ω =
mr⋃
k=1

jk⋃
i=1

(yk−1 + (i − 1)sk , yk−1 + (i − 1 + tk)sk). (2)

Then, we have∣∣∣Ĵ (θ)− J (ω)
∣∣∣ =

∣∣∣Ĵ (θ)− Ĵ (χω)
∣∣∣ ≤ Cr 2. (3)
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Concluding remarks

There is a big gap between the existing theory for continuum
analytical methods for optimal design and the numerical
practice.

We have shown that numerics and oscillating coefficients
easily produce resonances.

Optimal design problems are often better behaved since
numerics is capable of finding the microstructure that
minimization sequences develop.

There are several ways of discretizing the optimal design
problems and the convergence rate may differ from one to
another.

The use of relaxed formulations may help in improving the
convergence rates..

A LOT is still to be done....
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