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Motivation

To build convergent numerical schemes for NONLINEAR SCHRÖDINGER
EQUATIONS (NSE)

Goal: To cover the classes of NONLINEAR equations that can be solved
nowadays with fine tools from PDE theory and Harmonic analysis.

Key point: This has been done succesfully for the PDE models:
(Strichartz, Kato, Ginibre, Velo, Cazenave, Weissler, Saut, Bourgain,
Kenig, Ponce, Saut, Vega, Koch, Tataru, Burq, Gérard, Tzvetkov, ...)

What about Numerical schemes?

FROM FINITE TO INFINITE DIMENSIONS IN PURELY
CONSERVATIVE SYSTEMS.....

WITH OR WITHOUT DISSIPATION?
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Motivation

WARNING!

NUMERICS = CONTINUUM + (POSSIBLY) SPURIOUS
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Motivation

Note that the appropriate functional setting often depends on the PDE on
a subtle manner.
Consider for instance:

du

dt
(t) = Au(t), t ≥ 0; u(0) = u0.

A an unbounded operator in a Hilbert (or Banach) space H, with domain
D(A) ⊂ H. The solution is given by

u(t) = eAtu0.

Semigroup theory provides conditions under which eAt is well defined.
Roughly A needs to be maximal (A+ I is invertible) and dissipative
(A ≤ 0).
Most of the linear PDE from Mechanics enter in this general frame: wave,
heat, Schrödinger equations,...
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Motivation

Nonlinear problems are solved by using fixed point arguments on the
variation of constants formulation of the PDE:

ut(t) = Au(t) + f(u(t)), t ≥ 0; u(0) = u0.

u(t) = eAtu0 +
∫ t

0
eA(t−s)f(u(s))ds.

Assuming f : H → H is locally Lipschitz, allows proving local (in time)
existence and uniqueness in

u ∈ C([0, T ];H).

But, often in applications, the property that f : H → H is locally
Lipschitz FAILS.
For instance H = L2(Ω) and f(u) = |u|p−1u, with p > 1.
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Motivation

Then, one needs to discover other properties of the underlying linear
equation (smoothing, dispersion): IF eAtu0 ∈ X, then look for solutions of
the nonlinear problem in

C([0, T ];H) ∩X.

One then needs to investigate whether

f : C([0, T ];H) ∩X → C([0, T ];H) ∩X

is locally Lipschitz. This requires extra work: We need to check the
behavior of f in the space X. But the the class of functions to be tested
is restricted to those belonging to X.
Typically in applications X = Lr(0, T ;Lq(Ω)). This allows enlarging the
class of solvable nonlinear PDE in a significant way.
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Motivation

In that frame, numerical schemes need to reproduce at the discrete level
similar properties.

But the most classical ones often fail to do it!
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Dispersion for the 1− d Schrödinger equation

Consider the Linear Schrödinger Equation (LSE):

iut + uxx = 0, x ∈ R, t > 0, u(0, x) = ϕ, x ∈ R.

It may be written in the abstract form:

ut = Au, A = i∆ = i∂2 · /∂x2.

Accordingly, the LSE generates a group of isometries ei∆t in L2(R), i. e.

||u(t)||L2(R) = ||ϕ||L2(R), ∀t ≥ 0.

The fundamental solution is explicit G(x, t) = (4iπt)−1/2exp(−|x|2/4iπt).
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Dispersion for the 1− d Schrödinger equation

Dispersive properties: Fourier components with different wave numbers
propagate with different velocities.

• L1 → L∞ decay.

||u(t)||L∞(R) ≤ (4πt)−
1
2 ||ϕ||L1(R).

||u(t)||Lp(R) ≤ (4πt)−( 1
2
− 1

p
)||ϕ||Lp′ (R), 2 ≤ p ≤ ∞.

• Local gain of 1/2-derivative: If the initial datum ϕ is in L2(R), then

u(t) belongs to H
1/2
loc (R) for a.e. t ∈ R.

These properties are not only relevant for a better understanding of the
dynamics of the linear system but also to derive well-posedness and
compactness results for nonlinear Schrödinger equations (NLS).
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Dispersion for the 1− d Schrödinger equation

The following is well-known for the NSE:{
iut + uxx = |u|pu x ∈ R, t > 0,
u(0, x) = ϕ(x) x ∈ R.

(1)

Theorem

( Global existence in L2, Tsutsumi, 1987). For 0 ≤ p < 4 and ϕ ∈ L2(R),
there exists a unique solution u in C(R, L2(R)) ∩ Lqloc(L

p+2) with
q = 4(p+ 1)/p that satisfies the L2-norm conservation and depends
continuously on the initial condition in L2.

This result can not be proved by methods based purely on energy
arguments.
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Lack of numerical dispersion

The three-point finite-difference scheme

Consider the finite difference approximation

i
duh

dt
+ ∆hu

h = 0, t 6= 0, uh(0) = ϕh. (2)

Here uh ≡ {uhj }j∈Z, uj(t) being the approximation of the solution at the

node xj = jh, and ∆h ∼ ∂2
x:

∆hu =
1
h2

[uj+1 + uj−1 − 2uj ].

The scheme is consistent + stable in L2(R) and, accordingly, it is also
convergent, of order 2 (the error is of order O(h2)).
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Lack of numerical dispersion

In fact, ||uh(t)||`2 = ||ϕ||`2 , for all t ≥ 0.
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Lack of numerical dispersion

LACK OF DISPERSION OF THE NUMERICAL SCHEME
Consider the semi-discrete Fourier Transform

u = h
∑
j∈Z

uje
−ijhξ, ξ ∈ [−π

h
,
π

h
].

There are “slight” but important differences between the symbols of the
operators ∆ and ∆h:

p(ξ) = −ξ2, ξ ∈ R; ph(ξ) = − 4
h2

sin2(
ξh

2
), ξ ∈ [−π

h
,
π

h
].

For a fixed frequency ξ, obviously, ph(ξ)→ p(ξ), as h→ 0. This confirms
the convergence of the scheme. But this is far from being sufficient for oul
goals.
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Lack of numerical dispersion

Lack of coherence?
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Lack of numerical dispersion

The main differences are:

• p(ξ) is a convex function; ph(ξ) changes convexity at ± π
2h .

• p′(ξ) has a unique zero, ξ = 0; p′h(ξ) has the zeros at ξ = ±π
h as well.

These “slight” changes on the shape of the symbol are not an obstacle for
the convergence of the numerical scheme in the L2(R) sense. But produce
the lack of uniform (in h) dispersion of the numerical scheme and
consequently, make the scheme useless for nonlinear problems.
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Lack of numerical dispersion

This can be seen using classical results on the asymptotic behavior of
oscillatory integrals:

Lemma

(Van der Corput)
Suppose φ is a real-valued and smooth function in (a, b) that

|φ(k)(ξ)| ≥ 1

for all x ∈ (a, b). Then ∣∣∣∣∫ b

a
eitφ(ξ)dξ

∣∣∣∣ ≤ ckt−1/k (3)
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Lack of numerical dispersion

Figure: Localized waves travelling at velocity = 1 for the continuous equation
(left) and wave packet travelling at very low group velocity for the FD scheme
(right).
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Lack of numerical dispersion

NUMERICAL APPROXIMATION OF THE NLSE

The lack of dispersive properties of the conservative linear scheme
indicates it is hard to use for solving nonlinear problems. But, in fact,
explicit travelling wave solutions for

i
duh

dt
+ ∆hu

h = |uhj |2(uhj+1 + uhj−1),

show that this nonlinear discrete model does not have any further
integrability property (uniformly on h) other than the trivial L2-estimate
(M. J. Ablowitz & J. F. Ladik, J. Math. Phys., 1975.)
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Remedies Fourier filtering

A REMEDY: FOURIER FILTERING
Eliminate the pathologies that are concentrated on the points ±π/2h and
±π/h of the spectrum, i. e. replace the complete solution

uj(t) =
1

2π

∫ π/h

−π/h
eijhξeiph(ξ)tϕ(ξ)dξ, j ∈ Z.

by the filtered one

u∗j (t) =
1

2π

∫ (1−δ)π/2h

−(1−δ)π/2h
eijhξeiph(ξ)tϕ(ξ)dξ, j ∈ Z.
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Remedies Fourier filtering

But Fourier filtering:

• Is computationally expensive: Compute the complete solution in the
numerical mesh, compute its Fourier transform, filter and the go back
to the physical space by applying the inverse Fourier transform;

• Is of little use in nonlinear problems.

Other more efficient methods?
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Remedies Numerical viscosity

A VISCOUS FINITE-DIFFERENCE SCHEME
Consider:  i

duh

dt
+ ∆hu

h = ia(h)∆hu
h, t > 0,

uh(0) = ϕh,
(4)

where the numerical viscosity parameter a(h) > 0 is such that a(h)→ 0 as
h→ 0.
This condition guarantess the consistency with the LSE.
This scheme generates a dissipative semigroup Sh+(t), for t > 0:

||u(t)||2`2 = ||ϕ||2`2 − 2a(h)
∫ t

0
||u(τ)||2~1dτ.

Two dynamical systems are mixed in this scheme:

• the purely conservative one, idu
h

dt + ∆hu
h = 0,

• the heat equation uht − a(h)∆hu
h = 0 with viscosity a(h).
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Remedies Numerical viscosity

• The viscous semi-discrete nonlinear Schrödinger equation is globally
in time well-posed;

• The solutions of the semi-discrete system converge to those of the
continuous Schrödinger equation as h→ 0.

But!!!

The viscosity has to be tunned depending on the exponent in the
nonlinearity

Solutions could decay too fast as t→∞ due to the viscous effect.
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Remedies A bigrid algorithm

THE TWO-GRID ALGORITHM: DO NOT MODIFY THE SCHEME
BUT SIMPLY PRECONDITION THE INITIAL DATA!

Let V h
4 be the space of slowly oscillating sequences (SOS) on the fine grid

V h
4 = {Eψ : ψ ∈ ChZ4 },

and the projection operator Π : ChZ → ChZ
4 :

(Πφ)((4j + r)h) = φ((4j + r)h)δ4r,∀j ∈ Z, r = 0,3, φ ∈ ChZ.
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Remedies A bigrid algorithm

We now define the smoothing operator

Π̃ = EΠ : ChZ → V h
4 ,

which acts as a a filtering, associating to each sequence on the fine grid a
slowly oscillating sequence. The discrete Fourier transform of a slowly
oscillating sequence SOS is as follows:̂̃Πφ(ξ) = 4 cos2(ξh) cos2(ξh/2)Π̂φ(ξ).
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Remedies A bigrid algorithm

The semi-discrete Schrödinger semigroup when acting on SOS has the
same properties as the continuous Schrödinger equation:

Theorem

i) For p ≥ 2,

‖eit∆hΠ̃ϕ‖lp(hZ) . |t|−1/2(1/p′−1/p)‖Π̃ϕ‖lp′ (hZ).

ii) Furthermore, for every admissible pair (q, r),

‖eit∆hΠ̃ϕ‖Lq(,lr(hZ)) . ‖Π̃ϕ‖l2(hZ).
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Remedies A bigrid algorithm

A TWO-GRID CONSERVATIVE APPROXIMATION OF
THE NLSE

Consider the semi-discretization

i
duh

dt
+ ∆hu

h = |Π̃∗(uh)|p Π̃∗(uh), t ∈ R;uh(0) = ϕh,

with 0 < p < 4.
By using the two-grid filtering operator Π̃ both in the nonlinearity and on
the initial data we guarantee that the corresponding trajectories enjoy the
properties above of gain of local regularity and integrability.
But to prove the stability of the scheme we need to guarantee the
conservation of the l2(hZ) norm of solutions, a property that the solutions
of NLSE satisfy. For that the nonlinear term f(uh) has to be chosen such
that

(Π̃f(uh), uh)l2(hZ) ∈ R.

This property is guaranteed with the choice

f(uh) = |Π̃∗(uh)|p Π̃∗(uh)

i.e.

(f(uh))4j = g
(

(uh4j +
∑3

r=1
4−r

4 (uh4j+r + uh4j−r))
/

4
)

; g(s) = |s|ps.

The same arguments as in the viscosity method allow showing that the
solutions of the two-grid numerical scheme converge as h→ 0 to the
solutions of the continuous NLSE.
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Remedies A bigrid algorithm

Drawbacks:

The space of two-grid data is not time-invariant. The data have to be
adjusted after a finite T : [0, T ], [T, 2T ],....
Succes depends on the identification of the location of pathological
frequencies and the choice of a srategic value for the mesh-ratio.
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Remedies A bigrid algorithm
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Orders of convergence

Is all this analysis needed?
In practice, we could:

1.- Approximate the initial data ϕ by smooth ones

2.- Use standard tools of numerical analysis for smooth data that
allow handeling stronger nonlinearities because the corresponding
solutions are bounded.

3.- By this double approximation derive a family of numerical
solutions converging to te continuous one.

Warning! When doing that we pay a lot (!!!) at the level of the orders of
convergence...
An example: The two-grid method yields:

||uh − Thu||L∞(0,T ;`2(hZ)) ≤ C(T, ||ϕ||Hs)hs/2.
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Orders of convergence

When using the standard 5-point scheme, without dispersive estimates, we
can regularize the Hs data by a H1 approximation and then use that the
solutions of the Schrödinger equation are in L∞ to handle the nonlinearity.
When this is done we get an order of convergence of | log h|−s/(1−s)
instead of hs/2.
This is due to the following threshold for the aproximation process:

Lemma

Let 0 < s < 1 and h ∈ (0, 1). Then for any ϕ ∈ Hs(R) the functional
Jh,ϕ defined by

Jh,ϕ(g) =
1
2
‖ϕ− g‖2L2(R) +

h

2
exp(‖g‖2H1(R)) (5)

satisfies:

min
g∈H1(R)

Jh,ϕ(g) ≤ C(‖ϕ‖Hs(R), s)| log h|−s/(1−s). (6)

Moreover, the above estimate is optimal.
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Comments on control

The control diverges as h→ 0.
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Comments on control

About the discussion on infinite dimensional versus finite
dimensional control
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Comments on control

Conclusions:

Stantard numerical schemes have to be ”tuned” to guarantee
convergence in the nonlinear setting.

Dissipation and two-grid filtering mechanisms help.

Our analysis relies on Fourier transform. Much remains to be done to
deal with more general modelas and non-uniform meshes.

Similar pathologies and cures may arise also on control problems.

The analysis developed here may also be relevant in other issues such
as the transparent boundary conditions: What can they do if waves
do not reach the boundary?

....

....

Things might seem better in numerical experiments, but: WARNING:
These effects are in!

Be careful when transfering qualitative properties from the numerics
to the PDE setting and viceversa.
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Comments on control
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Comments on control

¡Thank you!
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