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1.- Optimal design for waves: a microlocal
approach



Internal stabilization of waves: Let ω be an open subset of Ω. Con-
sider: 

ytt −∆y =−yt1ω in Q = Ω× (0,∞)
y = 0 on Σ = Γ× (0,∞)
y(x,0) = y0(x), yt(x,0) = y1(x) in Ω,

where 1ω stands for the characteristic function of the subset ω.

The energy dissipation law is then

dE(t)

dt
= −

∫
ω
|yt|2dx.

Question: Do they exist C > 0 and γ > 0 such that

E(t) ≤ Ce−γtE(0), ∀t ≥ 0,

for all solution of the dissipative system?



This is equivalent to an observability property: There exists C > 0
and T > 0 such that

E(0) ≤ C
∫ T

0

∫
ω
|yt|2dxdt.

In other words, the exponential decay property is equivalent to show-
ing that the dissipated energy within an interval [0, T ] contains a
fraction of the initial energy, uniformly for all solutions.

This estimate, together with the energy dissipation law, shows that

E(T ) ≤ σE(0)

with 0 < σ < 1. Accordingly the semigroup map S(T ) is a strict
contraction. By the semigroup property one deduces immediately the
exponential decay rate.



The observability inequality and, accordingly, the exponential decay

property holds if and only if the support of the dissipative mechanism,

Γ0 or ω, satisfies the so called the Geometric Control Condition (GCC)

(Ralston, Rauch-Taylor, Bardos-Lebeau-Rauch,...)

Rays propagating inside the domain Ω following straight lines that

are reflected on the boundary according to the laws of Geometric

Optics. The control region is the red subset of the boundary. The

GCC is satisfied in this case. The proof requires tools from Microlocal

Analysis.



Given a subdomain ω (or Γ0) for which the stabilization problem holds,
it is natural to address the problem of optimizing the profile of the
damping potential a = a(x) to enhance the exponential decay rate.
Consider

ytt −∆y =−a(x)yt1ω in Q = Ω× (0,∞)
y = 0 on Σ = Γ× (0,∞)
y(x,0) = y0(x), yt(x,0) = y1(x) in Ω.

Then, for any a > 0 the exponential decay property holds:

E(t) ≤ Ce−γatE(0), ∀t ≥ 0.

Obviously, the decay rate γa depends on the damping potential a.

It is therefore natural to analyze the nature of the mapping a → γa.
One could also analyze the dependence of the decay rate on the
geometry of the subdomain ω (γa depends also on ω).



Against the very first intuition this map is not monotonic. A 1 − d
spectral computation yields:



Some known results:

• 1 − d: The exponential decay rate coincides with the spectral

abscissa within the class of BV damping potentials. For large

eigenvalues Re(λ) ∼ −
∫
ω a(x)dx/2 (S. Cox & E. Z., CPDE, 1993).

Thus:

γa ≤
∫
ω
a(x)dx.

But there is another limitation due to overdamping. Despite

of this, the following surprising result was proved (Castro-Cox,

SICON, 2001): The decay rate may be made arbitrarily large by

approximating singular potentials of the form a(x) = 2/x for the

space interval Ω = (0,1).



• In the multidimensional case the situation is even more complex.

In this case it is not longer true that the spectral absicssa charac-

terizes the exponential decay rate. There are actually two quan-

tities that enter in such characterization (G. Lebeau, 1996):

– The spectral abscissa;

– The minimum asymptotic average (as T →∞) of the damping

potential along rays of Geometric Optics.

The later is in agreement with our intuition of waves traveling

wlong rays of Geometric Optics.



This is a typical situation in which the spectral abscissa does not

suffice to capture the decay rate. The damping mechanism is

active on the outer neighborhood of the exterior boundary. When

the domain is the ellipsoid this produces the exponential decay.

But, in the presence of the two holes, the exponential decay rate

is lost, due to the existence of a trapped ray that never meets

the damping region. In this case the decay rate is zero but the

spectrum is not essentially affected if the holes are small enough.

Thus the spectrum is unable to characterize the null decay rate.



The optimal design of the damping potential with constraints

(size, shape, etc.) is still widely open.

– Hébrard-Henrot, SCL, 2003. They show the complexity of the

problem in the 1−d case for small amplitude damping potentials

located on the union of a finite number of intervals.

– Hébrard-Humbert, 2003: Optimization of the shape of ω in a

square domain in view of the geometric optics quantity entering

in the characterization of the decay rate.

– Cox-Henrot, Ammari-Tucsnak, 2002: 1−d problems with damp-

ing terms located at a single point through a Dirac delta.

Eigenvalues are complex valued, and they depend both on the



amplitude of the damping and the diophantine properties of

the point support.

– A. Münch, P. Pedregal, F. Periago 2005, ...: Young measures,

relaxation, Level set methods.

– And many others...



Hébrard-Humbert, 2003



A. Munch, 2005.



The main difficulties are related to the fact that there is no varia-

tional principle characterizing the decay rate, and to the complex

way in which the eigenvalues depend on the damping potentials,

and the different way they do it for low/high/intermediate fre-

quencies, for small/large amplitudes of the damping potentials,

with respect to the shape of the support, ....

Futhermore, not always all authors deal with the same problem.

For instance, the optimal damping for a given initial datum may

differ significantly from the optimal damping when considering

globally all possible solutions...

This is the case even for constant damping potentials k. The

optimal damping for the `-th eigenfunction is k = 2
√
µ`.



Open problem # 1.1: Characterize the optimal dampers for

given initial data. How do they depend on their regularity? What

about initial data with a finite number of Fourier components?

Open problem # 1.2: Given the subdomain ω, characterize the

optimal damping potential for all finite energy solutions.

Open problem # 1.3: Given a damping potential (constant, for

instance), characterize the optimal subdomain ω for its location.

Open problem # 1.4: Optimal dampers for the billiard. What

is the subdomain that absorbs faster all rays? How this depends

on the geometry of Ω? How it depends on the number of con-

nected components of ω and on its size? What about variable

coefficients/metrics?



2.- Sharp observability estimates for heat
equations



THE CONTROL PROBLEM

Let n ≥ 1 and T > 0, Ω be a simply connected, bounded domain

of Rn with smooth boundary Γ, Q = (0, T )×Ω and Σ = (0, T )×Γ:
ut −∆u = f1ω in Q
u = 0 on Σ
u(x,0) = u0(x) in Ω.

(1)

1ω denotes the characteristic function of the subset ω of Ω where

the control is active.

We assume that u0 ∈ L2(Ω) and f ∈ L2(Q) so that (1) admits an

unique solution

u ∈ C
(
[0, T ] ;L2(Ω)

)
∩ L2

(
0, T ;H1

0(Ω)
)
.



u = u(x, t) = solution = state, f = f(x, t) = control

Well known result (Fursikov-Imanuvilov, Lebeau-Robbiano,...) :

The system is null-controllable in any time T and from any open

non-empty subset ω of Ω.

In other words, for all u0 ∈ L2(Ω) there exists a control f ∈
L2(ω × (0, T )) such that the corresponding solution satisfies

u(T ) ≡ 0.





The control of minimal L2-norm can be found by minimizing

J0(ϕ0) =
1

2

∫ T
0

∫
ω
ϕ2dxdt+

∫
Ω
ϕ(0)u0dx (2)

Obviously, the functional is continuous and convex from L2(Ω) to

R and coercive because of the observability estimate:

‖ ϕ(0) ‖2
L2(Ω)≤ C

∫ T
0

∫
ω
ϕ2dxdt, ∀ϕ0 ∈ L2(Ω). (3)

This estimate was proved by Fursikov and Imanuvilov (1996) using

Carleman inequalities. In fact the same proof applies for equations

with smooth (C1) variable coefficients in the principal part and

for heat equations with lower order potentials.



Consider the heat equation or system:
ϕt −∆ϕ = 0 in Q
ϕ = 0 on Σ
ϕ(0, x) = ϕ0(x) in Ω

(4)

where ϕ takes values in RN .

In the absence of potential, the Carleman inequality yields the fol-

lowing observability estimate for the solutions of the heat equa-

tion: ∫ ∞
0

∫
Ω
e
−A
t ϕ2dxdt ≤ C

∫ ∞
0

∫
ω
ϕ2dxdt.



Open problem # 2.1: Characterize the best constant A in this

inequality:

A = A(Ω, ω).

The Carleman inequality approach allows establishing some upper

bounds on A depending on the properties of the weight function.

But this does not give a clear path towards the obtention of a

sharp constant.





L. Miller (2003) , by inspection of the heat kernel, proved

A > `2/4

where ` is the length of the largest geodesic in Ω \ ω.

Recall that:

G(x, t) = (4πt)−n/2 exp
(−|x|2

4t

)
.

then, the following upper bound holds for the Green function in

Ω:

GΩ(x, y, t) ≤ Ct−n/2 exp
(−d2(x, y)

(4 + δ)t

)
.







The spectral approach

Lebeau and Robbiano proposed (1996) a spectral proof of the
null controllability that, by duality, yields observability inequalities
too. The key ingredient is the following estimate on the linear
independence of restrictions of eigenfunctions of the laplacian:

Theorem 1 (Lebeau + Robbiano, 1996)

Let Ω be a bounded domain of class C∞. For any non-empty
open subset ω of Ω there exist B,C > 0 such that

Ce−B
√
µ
∑
λj≤µ

| aj |2≤
∫
ω

∣∣∣∣∣∣∣
∑
λj≤µ

ajψj(x)

∣∣∣∣∣∣∣
2

dx (5)

for all
{
aj
}
∈ `2 and for all µ > 0.



Open problem # 2.2: To characterize the best constant B =

B(Ω, ω).? Is the constant B in this spectral inequality related to

the best constant A > 0 in the parabolic one?

Several works have also been devoted to get upper bounds on the

best constant A using Carleman inequalities, Kannai’s tranform

and the control of waves under the so-called Geometric Con-

trol Condition (GCC) (Miller),one-dimensional tools from non-

harmonic Fourier series, moment problems and number theory

(Seidman; Tucsnak and Tenenbaum,...) but, as far as we know,

even in 1− d the problem of getting sharp upper bounds in open.



Open problem # 2.3: In one space-dimension is it true that

A = `2/4 ???

Open problem # 2.4: Possible connections with well known re-

sults on decay rates for damped wave equations in which both

microlocal quantities and spectral ones enter, that only coincide

in 1− d (see Section #1)???



3.- Robust control of linear
finite-dimensional systems



Partially dissipative linear hyperbolic systems

∂w

∂t
+

m∑
j=1

Aj
∂w

∂xj
= −Bw , x ∈ Rm , w ∈ Rn (6)

A1, ..., Am
symmetric

B =

(
0 0
0 D

)
l n1
l n2

XtDX > 0
∀X ∈ Rn2 − {0}

Goal: Understand the asymptotic behavior as t→∞.

Apply Fourier transform:

∂ŵ

∂t
= (−B − iA(ξ))ŵ where A(ξ) :=

m∑
j=1

ξjAj



Lack coercivity : 〈[B+iA(ξ)]X,X〉 = 〈BX,X〉 = 〈DX2, X2〉 � c|X|2

is compatible with the decay depending on ξ:

exp[(−B − iA(ξ))t] 6 Ce−λ(ξ)t

PARTIALLY DISSIPATIVE LINEAR HYPERBOLIC SYSTEM

≡

m-PARAMETER (ξ) FAMILY OF FINITE-DIMENSIONAL

PARTIALLY DISSIPATIVE n-DIMENSIONAL SYSTEMS.

The asymptotic behavior of solutions is determined by the behav-

ior of the function ξ → λ(ξ) giving the decay rate as a function of

ξ.



A quantitative measure of the decay rate as a function of ξ:

A1, ..., Am
symmetric

B =

(
0 0
0 D

)
l n1
l n2

A(ξ) :=
m∑
j=1

ξjAj

ξ = ρω ∈ Rm ρ > 0 ω ∈ Sm−1 (mk) ↑ well chosen

N∗,ε(ω) := min{
n−1∑
k=0

εmk|BA(ω)kx|2;x ∈ Sn−1}.



Theorem 2 (K. Beauchard and E. Z.)

∃ε∗ > 0, c > 0 such that ∀ε ∈ (0, ε∗),

exp[(−B − iρA(ω))t] 6 2e−cN∗,ε(ξ)min{1,ρ2}t.

Remark : (SK)= (Shizuta-Kawashima) ⇔ Kalman rank

condition for (A,B) ⇔ N∗,ε(ω) > N∗,ε > 0, ∀ω ∈ Sm−1.

In general, N∗,ε(ω) may vanish for some values of ω ∈ Sm−1, in

which case the decomposition of solutions and its asymptotic form

is more complex.



The set of degeneracy :

D(B + iA(ξ)) = {ξ ∈ Rm; rank[B|BA(ξ)|...|BA(ξ)n−1] < n}

is an algebraic submanifold

– either |D| = 0 ⇔ N∗,ε > 0 a.e. ⇒ strong L2 stability;

or

– D = Rm : ∃ non dissipated solutions

Open problem # 3.1: Characterize and classify, in terms of
(A,B), the possible sets of degeneracy D.

Open problem # 3.2: Characterize and classify, in terms of
(A,B), the possible degenerate behaviors of N∗,ε(ω) as ω → D.



Open problem # 3.3: Classify the possible asymptotic behaviors

of partially dissipative hyperbolic systems as t→∞.

Open problem # 3.4: Describe the controllability properties of

m-parameter families of finite-dimensional systems:

x′(t) + iA(ξ)x(t) = Bu(t) where A(ξ) :=
m∑
j=1

ξjAj.



An example:

Theorem 3 (K. Beauchard & E. Z.)

When n1 = 1, D is a vector subspace of Rm and

N∗,ε(ω) > cmin{1,dist(ω,D)2}, ∀ω ∈ Sm−1.

Example: n = m = 2; D = {(ξ1, ξ2) : a1
21ξ1 + a2

21ξ2 = 0}.



4.- Control of Kolmogorov’s equation



Null control of the Kolmogorov equation:

∂f

∂t
+ v

∂f

∂x
−
∂2f

∂v2
= u(t, x, v)1ω(x, v), (x, v) ∈ Rx ×Rv, t ∈ (0,+∞).

(7)

In a recent work with K. Beauchard, we consider the particular

case where where ω = Rx ×
[
Rv − [a, b]

]
.

Equivalently, one may address the following observability inequal-
ity for the adjoint system: ∂g

∂t − v
∂g
∂x −

∂2g
∂v2 = 0, (x, v) ∈ Rx ×Rv, t ∈ (0, T ),

g(0, x, v) = g0(x, v), (x, v) ∈ Rx ×Rv.
(8)

∫
Rx×Rv

|g(T, x, v)|2dxdv 6 C
∫ T

0

∫
ω
|g(t, x, v)|2dxdvdt.



Theorem 4 (K. Beauchard and E. Z.)

In the particular case where ω = Rx ×
[
Rv − [a, b]

]
the observabil-

ity inequality holds for the adjoint system and the Kolmogorov
equation is null controllable.

Ideas of the proof:

– Fourier transform in v: ∂f̂
∂t (t, ξ, v) + iξvf̂(t, ξ, v)− ∂2f̂

∂v2(t, ξ, v) = û(t, ξ, v)1R−[a,b](v),

f̂(0, ξ, v) = f̂0(ξ, v).
(9)



– Decay:∣∣∣∣f̂(t, ξ, .)
∣∣∣∣
L2(R)

6
∣∣∣∣f̂0(ξ, .)

∣∣∣∣
L2(R)

e−ξ
2t3/12, ∀ξ ∈ R, ∀t ∈ R+. (10)

– Control depending on the parameter ξ with cost

eC(T ) max{1,
√
|ξ|}.

The exponentially large cost of control for high frequencies is

compensated by the exponential (and stronger) decay rate.



Open problem # 4.1: Similar results hold for other geometries

of control sets?

Open problem # 4.2: What about more general classes of hy-

poelliptic equations?

Open problem # 4.3: May Carleman inequalities be applied di-

rectly on the Kolmogorov system without using Fourier transform?

Open problem # 4.4: How are related the notions of hypoellip-

ticity and hypocoercivity with the property of null controllability

(connections with Open Problems #2.X on the heat kernel).


