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Motivation

Control problems for PDE are important for at least two reasons:
@ They emerge in most real applications:
PDE as the models of Continuum and Quantum Mechanics.

Control and/or Optimization as essential step in all
processes.

@ They demand a better master of the standard PDE models and
new analytical tools.

This need of new analytical tools is enhanced when facing numerical

simulation problems!

Furthermore, these kind of techniques are of application in some other
fields, such as inverse problems, optimal shape design and paramet&gzgm]
identification problems.
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Topics to be addressed:

@ The wave equation: propagation of discrete waves
@ Heterogenous grids

© Perspectives

(bcan)
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The control of waves Why?
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A toy model
Control of 1 — d vibrations of a string

The 1-d wave equation, with Dirichlet boundary conditions, describing the
vibrations of a flexible string, with control on one end:

Yir — Yxx = 0, 0<x<l1l 0<t<T
y(0,t) = 0; y(1,t) =v(t), 0<t<T
y(XvO):yO(X)aYt(XvO):yl(X)a 0<x<1

y = y(x, t) is the state and v = v(t) is the control.

The goal is to stop the vibrations, i.e. to drive the solution to equilibrium
in a given time T: Given initial data {y%(x), y!(x)} to find a control

v = v(t) such that

y(x, T)=wn(x,T)=0, 0<x<L1

(bcan)
Enrique Zuazua (BCAM) Control and numerics PASI-CIPPDE-2012, Chile 10 / 62



The control of waves A toy model
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A toy model
The dual observation problem

The control problem above is equivalent to the following one, on the
adjoint wave equation:

Vit — Pxx = 0, 0<x<1,0<t<T
@(Oat):@(]wt):o) 0<t< T
¢(x,0) = ¥°(x), pe(x,0) = '(x), 0<x< L.

The energy of solutions is conserved in time, i.e.

E(t) = ;/0 [l )P + foelx, 1)) i = E(0), VO << T.

The question is then reduced to analyze whether the folllowing inequality
is true. This is the so called observability inequality:

-
E(0) < C(T)/ |ox(1, )| dt.
0 (bcam)
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The control of waves A toy model

The answer to this question is easy to gues: The observability inequality
holds if and only if T > 2.
t

2-201 /M

RARS T
% 5 VA - E(0) Sfo ‘g&x(l,t)\th

Wave localized at t = 0 near the extreme x = 1 that propagates with
velocity one to the left, bounces on the boundary point x = 0 and reaches
the point of observation x = 1 in a time of the order of 2.

(bcanm)
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A toy model
Construction of the Control

Once the observability inequality is known the control is easy to
characterize. Following J.L. Lions’ HUM (Hilbert Uniqueness Method), the
control is

V(t) - <7OX(1'» t)a

where u is the solution of the adjoint system corresponding to initial data
(%, 1) € H3(0,1) x L2(0,1) minimizing the functional

1 T -1
I ) =5 [ loslL O der [ etdem <y g,

in the space H}(0,1) x L2(0,1).

Note that J is convex. The continuity of J in H}(0,1) x L?(0,1) is
guaranteed by the fact that ox(1,t) € L2(0, T) (hidden regularity).
Moreover,

COERCIVITY OF J = OBSERVABILITY INEQUALITY. (heam)

Enrique Zuazua (BCAM) Control and numerics PASI-CIPPDE-2012, Chile 14 / 62



A toy model
The continuous numerical approach: Gradient algorithms

The control was characterized as being the minimizer over
H3(0,1) x L2(0,1) of

1 T 1
S ) =5 [ lot 0t [yt <y g

We produce an algorithm in which:
o We apply a gradient iteration algorithm to J.

This leads to an iterative process

(0%, k), k=1
so that
Oxpk(1,t) = v(t) — v(t), as k — oo.

@ We replace J by some numerical approximation J, with an order A,
and apply a discrete version of the iterative process above to build
approximations of vj. (bean)
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The control of waves A toy model
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Note however that computing gradients, in practice, may be hard.
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A toy model
Classical steepest descent:

J: H— R. Two main assumptions:
< V() =VIW),u—v>>alu—v]®, |VI(u)=VIWV)]? < Mu—-vP

Then, for
ugr1 = ux — pVJI(uk),

we have
lug — u*| < (1 = 2pa + p>M)<2|uy — u|.

Convergence is guaranteed for 0 < p < 1 small enough (p < a/M).

Compare with the continuous marching gradient system

(1) = =VJ(u(r)).

(bcan)
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The control of waves A toy model

The following holds:

Theorem

(S. Ervedoza & E. Z., 2011)
In

K ~ Cllog(h)|

iterations, the controls v,f obtained after applying K iterations of the
gradient algorithm to Jy fulfill:

[lv = v{|| < Cllog(h)|™*D .

§

Note that for the classical Finite Difference and Finite Element methods
for the wave equation the convergence order is § = 2/3.

We have developed the continuous program successfully!

(bcar)
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The control of waves A toy model

Note that the error estimate deteriorates if K >> C|log(h)|!!!

Error Vs Iterations
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. and, therefore, the method has to be used with much care since, after
all, we are dealing with an unstable, non-robust algorithm.... (bcanm)
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The control of waves A toy model

Convergence of the descent algorithm for the continuous model and the
convergence of the numerical scheme in the classical sense of numerical
analysis leads to:

v = vill < llv = v¥Il + [V = vill < Clo(p)* + kh').

Note that, in here, nothing has been used about the actual properties of
control of the numerical scheme.

The estimate deteriorates when kh? >> o(p)*.

Cbear)
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The control of waves A toy model

The continuous method can not be implemented, in a reliable manner, as
one would expect/wish: To apply a descent or iterative algorithm for a

discrete functional Jp,, without worrying about possible divergence of the
process beyond a certain threshold of iterations.

The same occurs to other methods, based on different iterative algorithms
for building continuous controls, as for instance, the one developed by N.
Cindea et al.! based on D. Russell's®> method of “stabilization implies
control”, also closely related to the works by Auroux and Blum on the
nudging method for data assimilation for Burgers like equations.

IN. Cindea, S. Micu & M. Tucsnak, An approximation method for exact controls of
vibrating systems. SICON, 49 (3), (2011), 1283-1305.
2D. Russell, Controllability and stabilizability theory for linear partial differential (Jpcgm]
equatlons Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.
Control and numerics PASI-CIPPDE-2012, Chile 21 / 62
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The control of waves The discrete approach

But one might want to take a shortcut controlling a
finite-dimensional reduced dynamics.

Set h=1/(N+ 1) > 0 and consider the mesh
x=0<x1<..<xj=jh<xy=1-h<xy;1=1,
which divides [0, 1] into N + 1 subintervals
li = [xj,xj+1], j = 0,..., N.
Finite difference semi-discrete approximation of the wave equation:

o — s lpirn +9j-1 =201 =0, 0<t<T,j=1,...,N
i(t) = 0, j=0,N+1,0<t<T

;(0) = ¢?, ¢(0) = ¢;, Jj=1,...,N.
(bcan)
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The control of waves The discrete approach

X= xN=1—h
o—0—0—0—0—0—0——0——0——0
x,=0 Xy,,~1

From finite-dimensional dynamical systems to infinite-dimensional ones in
purely conservative dynamics
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The control of waves The discrete approach

Then it should be sufficient to minimize the discrete functional

lon(1, t)]?
it ) =2 [T L OR g5 oty —hzw,

j=1

which is a discrete version of the functional J of the continuous wave
equation since

pn(t PYn+1 — PNt
- h(): + - ()NSOX(]-7t)~

Then

(bcan)
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The discrete approach
A NUMERICAL EXPERIMENT

15 : ‘ ‘ ‘ a4

1 0.2

g 05 g o0

0 02
0% o2 o4 ) 06 o8 1 9% 1 % 3 4

Plot of the initial datum to be controlled for the string occupying the

space interval 0 < x < 1.
Plot of the time evolution of the exact control for the wave equation in

(bcan)
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The control of waves The discrete approach
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The control diverges as h — 0.

(bcam)
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The control of waves The discrete approach

The discrete approach naively or directly applied diverges as well.

In this case our algorithm gets the minimizer of J,. But the minimizer of

Jp is very far form that of J: This is a clear case in which [-convergence
with respect to the parameter h — 0 fails.

(bcam)
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The control of waves The discrete approach
WHY?

The Fourier series expansion shows the analogy between continuous and
discrete dynamics.
Discrete solution:

Continuous solution:

© = Z (ak cos(kmt) + % sin(kwt)) sin(kmx)

k=1

Cbear)
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The control of waves The discrete approach

Recall that the discrete spectrum is as follows and converges to the
continuous one:

A M =Kk?7%, ash— 0

W,i’ = (kal,..wwk’,v)T : wij = sin(kmjh), k,j=1,...,N.

The only relevant differences arise at the level of the dispersion properties
and the group velocity. High frequency waves do not propagate, remain
captured within the grid, without never reaching the boundary. This
makes it impossible the uniform boundary control and observation of the
discrete schemes as h — 0.
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The control of waves The discrete approach

1/2
Xk A .
Continuous problem

T N=n

Discrete problem

zt+
v

123

Graph of the square roots of the eigenvalues both in the continuous and in

the discrete case. The gap is clearly independent of k in the continuougcay)

case while it is of the order of h for large k in the discrete one.
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The discrete approach
A numerical phamtom

J = exp (i\/)\N(h) t) Wy — exp (i\/)\N_l(h) t) WN_1.
Spurious semi-discrete wave combining the last two eigenfrequencies with
very little gap: v/An(h) — /An—1(h) ~ h.

o

0.1

0.9

1

4 20 40 60 80 100 120 t

h=1/61, (N=60),0<t<120. =%
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The control of waves A remedy: Fourier filtering

Fourier filtering

L2
k A .
Continuous problem

[ Nt

Discrete problem

=+
N+
w +
=2
~v

To filter the high frequencies, keeping the components k < §/h with
0 < 6 < 1. Then the group velocity remains uniformly bounded below

nd
uniform observation holds in time T(§) > 2 such that T(0) — 2 as § —a';c(jsm]
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The control of waves A remedy: Fourier filtering

Relaxed controls:

Then, the filtering algorithm can be implemented as follows:

@ Minimize J, over the class of filtered solutions with filtering
parameter 0 < d < 1land T > T(9);
@ This yields controls v,‘f such that

o v} —vash—0;
e The corresponding states ¥, satisfiy:

7T(;()7h) = Wg(yh/) =0.

This is a relaxed version of the controllability condition.

(bcan)
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A remedy: Fourier filtering
Numerical experiment, revisited, with filtering

N=20 N=40
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With appropriate filtering the control converges as h — 0.
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The control of waves A remedy: Fourier filtering

The discrete approach when applied directly fails, but it can cured
borrowing ideas from the continuous analysis. The bonus is that:

We compute numerical approximations of the controls that perform

well, in an identified manner, controlling a Fourier projection of
solutions at the discrete level.

The algorithm converges is stable and robust, an the error diminishes
as the number of iterations — co.

(bcam)
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The multi-dimensional case.

Similar results are true in several space dimensions. The region in which
the observation/control applies needs to be large enough to capture all
rays of Geometric Optics. This is the so-called Geometric Control
Condition introduced by Ralston (1982) and Bardos-Lebeau-Rauch (1992).

Let 2 be a bounded domain of R”, n > 1, with boundary I of class Cc2.
Let o be an open and non-empty subset of [ and T > 0.

vie — Ay =0 in Q=Qx(0,T)
y =v(x, t)1r, on X=TIx(0,T)
(x,0) = y°(x),y¢(x,0) = y'(x) in Q.

(bcan)
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Multi-dimensions

Control region «<—

Rays propagating inside the domain 2 following straight lines that are
reflected on the boundary according to the laws of Geometric Optics. The
control region is the red subset of the boundary. The GCC is satisfied in
this case. The proof requires tools form Microlocal Analysis. (bcam)
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Multi-dimensions

In all cases the control is equivalent to an observation problem for the
adjoint wave equation:

@tt—AQOZO in Q:QX(O,T)
©=0 on YX=Txx(0,T)
o(x,0) = %(x), pe(x,0) = '(x) in Q.

Is it true that:
T Hp12
Ey < C(ro./ T) (?j dodt 7
0
Jro J0 n

And a sharp discussion of this inequality requires of Microlocal analysis.
Partial results may be obtained by means of multipliers: x - Vi, ¢, ¢,...

(bcan)
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THE 5-POINT FINITE-DIFFERENCE SCHEME

1
SD}I,k ) [801+1,k +@j—1.k — 40j k + Qjk+1 + @j,k_l] =0.

The energy of solutions is constant in time:

h2 N N
= ?ZZ |<PJ/<
j=0 k=0

wjk+1(t) — @i k(t)
h

pir1,k(t) — pjk(t) ?
h

+ +

7
Without filtering observability inequalities fail in this case too.
Understanding how filtering should be used requires of a microlocal
analysis of the propagation of numerical waves combining von Neumann
analysis and Wigner measures developments (N. Trefethen, P. Gérard, P.
L. Lions & Th. Paul, G. Lebeau, F. Macia, ...). (bcam)
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The von Neumann analysis.

Symbol of the semi-discrete system for solutions of wavelength h
pr(€,7) = 72 — 4 (sin®(&1/2) + sin*(€2/2)) ,

versus p(¢,7) = 72 = [|&1]* + |&2[°]-
Both symbols coincide for (£1,&2) ~ (0,0).
Solving the bicharacteristic flow we get the discrete rays:

sm(fj)

xj(t) = = t+xj0, (versus xj(t) = —%t + Xj.0.)

RAYS ARE STILL STRAIGHT LINES. BUT! The velocity is

: . 1/2
’X/(t)‘ = SIn(gl) g + Sln(€2) 2]
T T
THE VELOCITY OF PROPAGATION VANISHES ! in the following
eight points
gl — 07 iﬂ—:fQ — 07 iﬂ'v (51752) # (07 O) (jpcam]
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Goup Veloly

e ey
S Ss

Group velocity in dimension two, it = 1/50

(bcam)
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Multi-dimensions

Controls in multi-d may develop complex and unexpected patterns, in view
of the laws of Geometric Optics.

0+ Y0, N0 smooting

N

a3

«

i

-y wh mmocthing

G. Lebeau and M. Nodet, Experimental Study of the HUM Control
Operator for Linear Waves, Experimental Mathematics, 2010.
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Heterogeneous grids

In practice, grids are not uniform and, accordingly, the Fourier and von
Neumann analysis above is not sufficient to describe the propagation of

high frequency numerical solutions. A new symbolic calculus is needed to

define the discrete rays.
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Problem formulation

The wave equation with variable coefficients on R:
p(Y)ue — (o(y)uy), =0,t >0, y € R. (1)
Energy conserved in time:

1
€pal = 2/ V)lue(y, t)7 + o (y)luy (v, t)[?) dy.
R
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Finite difference approximations

Let h > 0 be the mesh size parameter, g : R — R be an increasing
function on R, " := {x; := jh,j € Z} and 92, ={gj = g(xj),j € Z} the
uniform grid of size h of R and the non-uniform one obtained by
transforming the uniform one through the map g.

Finite difference semi-discretization of (1) on the non-uniform grid 92:

U(gjﬂ/z)% - U(gjfl/2)%
p(87)uj () — e =0. (2
2

Energy is conserved in time

h o(8gj+1/2)

h h0 . h1y . h +1/2J oh,

&5 0 (u"0uh) = 23 [0"gip(gy) | e(1) P + — T2 0 uj()P].
jez &

This schemes provides a convergent numerical approximation. (bcam)
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The principal symbol :

olx, ,6,7) 1= ~£ (x)p(g()r +asin? (3) Ug(f((xx)))' 3)

The null bi-characteristic lines associated to this principal symbol are the
solutions of the Hamiltonian system:

X(s) = Bep = 2sin(=(s)) ZEXED

)

t(s) = Orp = —g'(X(s))p(g(X ( )T
=(s) = —0kp = (&'(")r(g("))

7(s) = —0ip = 0,

(4)
(X(t),=(t)) solves the Hamiltonian system:
(X)'(t):zpcg(xu))cos(:( )) EY(0) = e x(sin (32) ()
with
= Vo(g( (x))/&'(x)- (bcan)
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Heterogeneous grids

Using Wigner transforms, high frequency solutions can be shown to
propagate and concentrate along those rays provided ¢, € CH1(R).
This means that the coefficients o and p need to be in C*1(R) and the
grid transformation g € C>1(R).

o Gérard, P., Markowich, P., Mauser, N., Poupaud, Ph. Homogenization
limits and Wigner transforms, Comm. Pure Appl. Math., 1997.

@ Lions P.-L., Paul, Sur les mesures de Wigner, Rev. Matematica
Iberoamericana, 1993.

@ Macia, F. Wigner measures in the discrete setting: high frequency
analysis of sampling and reconstruction operators, SIAM J. Math.
Anal., 2004.

(bcam)
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Numerical simulations

-1 -0.5 ] 0.5 1

Figure: The numerical solution and the corresponding bicharacteristic ray with
g(x) = tan(mwx/4).
(bcar)
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Heterogeneous grids

-0.

.5 0 0.5 1 . .
5
‘ | 7
3 4
2 4
. ] 7
-0.5 0 0.5 1 = 0 0.5 1

Figure: The numerical solution and the corresponding bicharacteristic ray with
g(x) = 2sin(nx/6).

(jpcqm]
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Heterogeneous grids

Figure: The phase portrait for the grid transformations g(x) = tan(wx/4) and
g(x)=2sin(7wx/6).
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Heterogeneous grids

-1
-1

Figure: Grid corresponding to the transformations g(x) = tan(wx/4) and

g(x) = sin(mwx/6) respectively.

Control and numerics

PASI-CIPPDE-2012, Chile
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Heterogeneous grids

Initial frequency=x=/h, Initial frequency=
- t_
1] 1
Initial frequency=nr/4h Phase portrait of the rays
y__1 y=-1 0 1

K< <]D]> ] [ =l +]

(bcam)
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Heterogeneous grids

The analysis above can be extended to the multi-dimensional case,
provided grids can be mapped smoothly into uniform grids as in the
example below:
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Heterogeneous grids

But there is istill plenty to be done to understand the behavior of discrete
waves over very irregular meshes:
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Conclusions

o Efficient and rigorous numerical computation of controllers can be
built but often combining tools from the continuous and the discrete
approaches.

@ Heterogeneous grids may lead to novel unexpected phenomena of
discrete wave propagation.

@ Plenty is still to be done in the interfaces between PDE, Control,
Numerics, Harmonic Analysis,...

@ Similar issues are relevant in many other contexts as well, for
instance, control of conservation laws in the presence of shocks
(S. Ulbrich, M. Giles, C. Bardos & O. Pironneau, A. Bressan & A.
Marson, E. Godlewski & P. A. Raviart, C. Castro, F. Palacios & E. Z.,

't Iy 1 e
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Perspectives

Multi-resolution filtering techniques.
Adaptivity.

More singular and heterogeneous grids.

Numerical control of waves in random media and in the presence of
noise.

Robust controllers.

@ Multiphysics systems: thermoelasticity, fluid-structure interaction,...

@ Networks.
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