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Motivation

Engineering and physical processes do not obey a single modeling
paradigm. Often times, both time-dependent and steady models are
available and appropriate.

This yields a number of di↵erent possibilities when facing optimal
design, control and inverse problems.

What model do we adopt? The time-dependent or the steady state
one.

Steady-state models are often understood as a simplification of the
time evolution one, assuming (some times rigorously but most often
without proof) that the time-dependent solution stabilizes around the
steady-state as t ! 1.

Main question

Does the solution of the time-evolution control (or design or inverse
problem) converge as t ! 1 to the control of the steady state problem as
well?
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Motivation

This issue is particularly important in aeronautical optimal design,1 a
mature but still rapidly evolving field where huge challenges arise and,
in which, in particular, many problems related to design and control
are still widely open.

Often times people employ steady state models and the corresponding
control ones while, from a mathematical point of view, the evolution
problem is better understood.

The reason for this is very simple: In the context of Nonlinear PDE
steady state problems are hard to solve. In particular uniqueness is
hard to prove. Accordingly sensitivity analysis is di�cult as well. By
the contrary, for evolution problems, under suitable assumptions on
the nonlinearity, initial-boundary value problems are uniquely solvable,
solutions depending smoothly on the data.

1A. Jameson. ”Optimization Methods in Computational Fluid Dynamics
(with Ou, K.), Encyclopedia of Aerospace Engineering, Edited by Richard
Blockley and Wei Shyy, John Wiley Sons, Ltd., 2010.”
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Shape design in aeronautics

Optimal shape design in aeronautics. Two aspects:

Shocks.
Oscillations.

Optimal shape ⇠ Active control. The shape of the cavity or airfoil
controls the surrounding flow of air.
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Shape design in aeronautics

Two approaches:
Discrete: Discretization + gradient

Advantages: Discrete clouds of values. No shocks. Automatic
di↵erentiation, ...

Drawbacks:
”Invisible” geometry.

Scheme dependent.

Continuous: Continuous gradient + discretization.

Advantages: Simpler computations. Solver independent. Shock
detection.

Drawbacks:
Yields approximate gradients.
Subtle if shocks.
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Shocks: A remedy

The relevant models in aeronautics (Fluid Mechanics):

Navier-Stokes equations;

Euler equations;

Turbulent models: Reynolds-Averaged Navier-Stokes (RANS),
Spalart-Allmaras Turbulence Model, k � " model;
....

Burgers equation (as a 1� d theoretical laboratory).
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Shocks: A remedy

Solutions may develop shocks or quasi-shock configurations.

For shock solutions, classical calculus fails;

For quasi-shock solutions the sensitivity is so large that classical
sensitivity clalculus is meaningless.
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Shocks: A remedy
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Shocks: A remedy

Burgers equation

Viscous version:
@u

@t
� ⌫

@2

u

@x2
+ u

@u

@x
= 0.

Inviscid one:
@u

@t
+ u

@u

@x
= 0.
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Shocks: A remedy

In the inviscid case, the simple and “natural” rule

@u

@t
+ u

@u

@x
= 0 ! @�u

@t
+ �u

@u

@x
+ u

@�u

@x
= 0

breaks down in the presence of shocks

�u = discontinuous, @u
@x = Dirac delta ) �u @u

@x ????

The di�culty may be overcame with a suitable notion of measure valued
weak solution using Volpert’s definition of conservative products and
duality theory (Bouchut-James, Godlewski-Raviart,...)
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Shocks: A remedy

A new viewpoint: Solution = Flow solution + shock location.
The pair (u,') solves:

8
>>>><

>>>>:

@tu + @x(
u

2

2
) = 0, in Q

� [ Q

+,

'0(t)[u]'(t) =
⇥
u

2/2
⇤
'(t)

, t 2 (0,T ),

'(0) = '0,
u(x , 0) = u

0(x), in {x < '0} [ {x > '0}.
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Shocks: A remedy

The corresponding linearized system is:

8
>>>>>>>><

>>>>>>>>:

@t�u + @x(u�u) = 0, in Q

� [ Q

+,

�'0(t)[u]'(t) + �'(t)
�
'0(t)[ux ]'(t) � [uxu]'(t)

�

+'0(t)[�u]'(t) � [u�u]'(t) = 0, in (0,T ),

�u(x , 0) = �u0, in {x < '0} [ {x > '0},
�'(0) = �'0,

Majda (1983), Bressan-Marson (1995), Godlewski-Raviart (1999),
Bouchut-James (1998), Giles-Pierce (2001), Bardos-Pironneau (2002),
Ulbrich (2003), ...
None seems to provide a clear-cut recipe about how to proceed within an
optimization loop.
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Shocks: A remedy

A new method

A new method: Splitting + alternating descent algorithm.
C. Castro, F. Palacios, E. Z., M3AS, 2008.

Ingredients:

The shock location is part of the state.

State = Solution as a function + Geometric location of shocks.

Alternate within the descent algorithm:
Shock location and smooth pieces of solutions should be treated
di↵erently;
When dealing with smooth pieces most methods provide similar results;
Shocks should be handeled by geometric tools, not only those based on
the analytical solving of equations.

Lots to be done: Pattern detection, image processing, computational
geometry,... to locate, deform shock locations,....
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Shocks: A remedy

Alternating descent / steepest descent.

Steepest descent:

uk+1

= uk � ⇢rJ(uk).

Discrete version of continuous gradient systems

u

0(⌧) = �rJ(u(⌧)).

Alternating descent: J = J(x , y), u = (x , y):

uk+1/2 = uk � ⇢Jx(uk); uk+1

= uk+1/2 � ⇢Jy (uk).

What’s the continuous analog? Does it correspond to a class of
dynamical systems for which the stability is understood?
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Shocks: A remedy

The logo of the web page “Domain decomposition”, one of the most
widely used computational techniques for solving PDE in domains (“divide
and conquer”). Inspired on the works by Karl Hermann Amandus Schwarz
(1843 – 1921) and Marius Sophus Lie ( 1842 – 1899 ):

exp(A+ B) = lim
n!1

h
exp(A/n) exp(B/n)

in
.
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Shocks: A remedy

Compare with the use of shape and topological derivatives in elasticity:

G. Allaire’s web page at Ecole Polytechnique, Paris.
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Shocks: A remedy

An example: Inverse design of initial data

Consider

J(u0) =
1

2

Z 1

�1
|u(x ,T )� u

d(x)|2dx .

u

d = step function.
Gateaux derivative:

�J =

Z

{x<'0}[{x>'0}
p(x , 0)�u0(x) dx + q(0)[u]'0

�'0,

(p, q) = adjoint state
8
>>>>>>>><

>>>>>>>>:

�@tp � u@xp = 0, in Q

� [ Q

+,
[p]

⌃

= 0,
q(t) = p('(t), t), in t 2 (0,T )
q

0(t) = 0, in t 2 (0,T )
p(x ,T ) = u(x ,T )� u

d , in {x < '(T )} [ {x > '(T )}

q(T ) =
1

2

[(u(x ,T )�ud )2]
'(T )

[u]'(T )

.
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Shocks: A remedy

The gradient is twofold= variation of the profile + shock location.

The adjoint system is the superposition of two systems = Linearized
adjoint transport equation on both sides of the shock + Dirichlet
boundary condition along the shock that propagates along
characteristics and fills all the region not covered by the adjoint
equations.
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Shocks: A remedy

State u and adjoint state p when u develops a shock:
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Shocks: A remedy

The discrete aproach

Recall the continuous functional

J(u0) =
1

2

Z 1

�1
|u(x ,T )� u

d(x)|2dx .

The discrete version:

J

�(u0
�

) =
�x

2

1X

j=�1
(uN+1

j � u

d
j )

2,

where u

�

= {ukj } solves the 3-point conservative numerical approximation
scheme:

u

n+1

j = u

n
j � �

⇣
g

n
j+1/2 � g

n
j�1/2

⌘
= 0, � =

�t

�x

,

where, g is the numerical flux

g

n
j+1/2 = g(unj , u

n
j+1

), g(u, u) = u

2/2.
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Shocks: A remedy

Examples of numerical fluxes

g

LF (u, v) =
u

2 + v

2

4
� v � u

2�
,

g

EO(u, v) =
u(u + |u|)

4
+

v(v � |v |)
4

,

g

G (u, v) =

⇢
minw2[u,v ] w

2/2, if u  v ,
maxw2[u,v ] w

2/2, if u � v .
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Shocks: A remedy

A new method: splitting+alternating descent

Generalized tangent vectors (�u0, �'0) 2 Tu0 s. t.

�'0 =

 Z '0

x�
�u0 +

Z x+

'0

�u0
!,

[u]'0

.

do not move the shock �'(T ) = 0 and

�J =

Z

{x<x�}[{x>x+}
p(x , 0)�u0(x) dx ,

⇢
�@tp � u@xp = 0, in Q̂

� [ Q̂

+,
p(x ,T ) = u(x ,T )� u

d , in {x < '(T )} [ {x > '(T )}.

For those descent directions the adjoint state can be computed by “any
numerical scheme”!
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Shocks: A remedy

Analogously, if �u0 = 0, the profile of the solution does not change,
�u(x ,T ) = 0 and

�J = �

(u(x ,T )� u

d(x))2

2

�

'(T )

[u0]'0

[u(·,T )]'(T )

�'0.

This formula indicates whether the descent shock variation is left or
right!

WE PROPOSE AN ALTERNATING STRATEGY FOR
DESCENT

In each iteration of the descent algorithm do two steps:

Step 1: Use variations that only care about the shock location

Step 2: Use variations that do not move the shock and only a↵ect the
shape away from it.
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Shocks: A remedy

Splitting+Alternating wins!
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Shocks: A remedy

Results obtained applying Engquist-Osher’s scheme and the one based on
the complete adjoint system

Splitting+Alternating method.
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Shocks: A remedy

Numerical schemes replace shocks by oscillations.

The oscillations of the numerical solution introduce oscillations on the
approximation of the functional J:
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Shocks: A remedy

We suggest to stay as close as possible to the true landscape if the
functional to be minimized accepting, and even taking advantage of, its
possible discontinuities.
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The steady state model

Joint work with M. Ersoy and E. Feireisl, in progress

Consider the scalar steady driven conservation law

@x [f (v(x))] + v(x) = g(x), x 2 R. (1)

In the context of scalar conservation laws (nonlinear semigroups of
L

1-contractions), these solutions can be viewed as limits as t ! 1 of
solutions of the evolution problem:

@tu(t, x) + @x f (u(t, x)) + u(t, x) = g(x), u(0, x) = u

0. (2)

Entropy L

1-solutions exist and are unique in both cases.
The steady state problem can be linearized with respect to variations of
the right hand side term

@x
�
f

0(v)h
�
+ h = �g . (3)

The measure valued solutions h of this problem can be characterized in an
unique manner in the context of duality solutions of Bouchut and James 2

2Bouchut F. and James F., One-dimensional transport equations with
discontinuous coe�cients, Nonlinear Analysis, Theory and Applications, 32 (7)
(1998), 891-933.
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The steady state model

The singular part of the measure contains the sensitivity of its shock
location. In this steady-state setting it holds

�s = [f 0(v)�v ]/[v ].

And this is precisely the asymptotic limit as t ! 1 of the time evolution
sensitivity of shocks:

�'0(t)[u]' + �'
�
'0(t)[ux ]' � [(f (u))x ]'

�
+ '0(t)[�u]' � [f 0(u)�u]' = 0,

since for the steady state solutions [(f (u))x ]s = �[u]s .
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The steady state model

-1

-0.5

0

0.5

1

-2 0 2 4 6 8

numerical solution v(x)
source term g(x)

-2

-1

0

1

2

3

0 2 4 6 8 10

numerical solution v(x)
source term g(x)

Two examples of steady state solutions
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The steady state model

Convergence towards the stateady state as t ! 1
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Evolution versus steady state control

Time evolution control problem. Joint work with A. Porretta, in
progress

Consider the finite dimensional dynamics
(
xt + Ax = Bu

x(0) = x

0

(4)

where A 2 MN,N , B 2 MN,M , the control u 2 L

2(0,T ;RM), and x

0

2 RN .
Given a matrix C 2 MN,N , and some x

⇤ 2 RN , consider the optimal
control problem

min
u

J

T (u) =
1

2

Z T

0

(|u(t)|2 + |C (x(t)� x

⇤)|2)dt .

There exists a unique optimal control u(t) in L

2(0,T ;RM), characterized
by the optimality condition

u = �B

⇤
p ,

(
�pt + A

⇤
p = C

⇤
C (x � x

⇤)

p(T ) = 0
(5)
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Evolution versus steady state control

The steady state control problem

The same problem can be formulated for the steady-state model

Ax = Bu.

Then there exists a unique minimum ū, and a unique optimal state x̄ , of
the stationary ”control problem”

min
u

Js(u) =
1

2
(|u|2 + |C (x � x

⇤)|2) , Ax = Bu , (6)

which is nothing but a constrained minimization in RN ; and by elementary
calculus, the optimal control ū and state x̄ satisfy

Ax̄ = Bū , ū = �B

⇤
p̄ , and A

⇤
p̄ = C

⇤
C (x̄ � x

⇤) .
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Evolution versus steady state control

We assume that
The pair (A,B) is controllable, (7)

or, equivalently, that the matrices A, B satisfy the Kalman rank condition

Rank

h
B AB A

2

B . . . AN�1

B

i
= N . (8)

Then there exists a linear stabilizing feedback law L 2 MM,N and c , µ > 0
such that
(
xt + Ax = B(Lx)

x(0) = x

0

=) |x(t)|  ce

�µt |x
0

| 8t > 0 . (9)

Concerning the cost functional, we assume that the matrix C is such that

The pair (A,C ) is observable (10)

which means that the following algebraic condition holds:

Rank

h
C CA CA

2 . . . CAN�1

i
= N . (11)
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Evolution versus steady state control

If (A,B) is controllable, then there exists c , independent of T , such that,
for every f 2 L

2(0,T ;RN), qT 2 RN , the solution of
(
�qt + A

⇤
q = f

q(T ) = qT

(12)

satisfies

|q(0)|2  c

Z T

0

|B⇤
q|2dt +

Z T

0

|f |2dt + e

�2µT |qT |2
�
, (13)

where µ is as above.
Indeed, multiplying the adjoint equation by x of (9), we get

q(0) · x
0

= qT · x(T )�
R T
0

q(xt + Ax) dt +
R T
0

f · x dt
= qT · x(T )�

R T
0

B

⇤
q · Lx dt +

R T
0

f · x dt ,
and using the exponential decay of x(t) we obtain

|q(0) · x
0

|  C |x
0

|
Z T

0

|B⇤
q|2dt +

Z T

0

|f |2dt
� 1

2

+ C |x
0

| e�µT |qT |

which su�ces with x

0

= q(0).
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Evolution versus steady state control

Under the above controllability and observability assumptions, we have the
following result.

Theorem

Assume that (8) and (11) hold true. Then we have

1

T

min
u2L2(0,T )

J

T T!1�! min
u2RN

Js

and

1

T

Z T

0

�
|u(t)� ū|2 + |C (x(t)� x̄)|2

�
dt ! 0

where ū is the optimal control of Js and x̄ the corresponding optimal state.

In particular, we have

1

(b � a)T

Z bT

aT
x(t) dt ! x̄ ,

1

(b � a)T

Z bT

aT
u(t) dt ! x̄

for every a, b 2 [0, 1].
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Evolution versus steady state control

Proof

We use the optimality conditions defining the adjoint states p and p̄,
which give 8

><

>:

(x � x̄)t + A(x � x̄) = B(u � ū)

u � ū = �B

⇤(p � p̄)

�(p � p̄)t + A

⇤(p � p̄) = C

⇤
C (x � x̄)

Using the observability inequality (13) we have

|(p(0)�p̄)|  c

2

4
✓Z T

0

|C (x � x̄)|2 dt
◆ 1

2

+

✓Z T

0

|B⇤(p � p̄)|2 dt
◆ 1

2

+ |p̄|

3

5 .

(14)
Similarly, in the equation of x � x̄ we use the observability inequality for
(A,C ) which is ensured by (11):

|x(T )� x̄ |  c

✓Z T

0

|u � ū|2dt +
Z T

0

|C (x(t)� x̄)|2dt + |x
0

� x̄ |2
◆ 1

2

.

(15)
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Evolution versus steady state control

From the optimality system we get

[(x � x̄)(p � p̄)]t = B(u � ū)(p � p̄)� |C (x � x̄)|2

which implies

Z T

0

�
|u � ū|2 + |C (x � x̄)|2

�
dt = [(x

0

� x̄)(p(0)� p̄)] + [(x(T )� x̄)p̄]

hence Z T

0

�
|u � ū|2 + |C (x � x̄)|2

�
dt  c (16)

by the previous estimates (14) and (15). We conclude

1

T

Z T

0

�
|u � ū|2 + |C (x � x̄)|2

�
dt  C

T

! 0 .

This of course also implies the convergence of the averaged minimum level
to the stationary minimum.
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Evolution versus steady state control

Rate of convergence

Following [CLLP]3, if B⇤ and C are coercive we also have

|u� ū|2+|C (x� x̄)|2 = |B⇤(p� p̄)|2+|C (x� x̄)|2 � �
�
|p � p̄|2 + |x � x̄ |2

�

hence we deduce from the optimality system

[(x � x̄)(p � p̄)]t = �|B⇤(p � p̄)|2 � |C (x � x̄)|2  ��|(x � x̄)(p � p̄)| ,

for some � > 0. Since (x � x̄)(p � p̄) is bounded at t = 0 and t = T due
to (14), (15) and (16), we obtain

�e

��(T�t)
K  [(x � x̄)(p � p̄)](t)  Ke

��t

for some K > 0. Integrating we get
Z bT

aT

✓���u � ū

���
2

+
���x � x̄

���
2

◆
ds  K

⇣
e

��aT + e

��(1�b)T
⌘

which implies an exponential rate of convergence.
3P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, A. Porretta, Long time average of
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Evolution versus steady state control

Time scaling = Singular perturbations

Note that the problem in the time interval [0,T ] as T ! 1 can be
rescaled into the fixed time interval [0, 1] by the change of variables
t = Ts.
In this case the evolution control problem takes the form

"xs + Ax = Bu, s 2 [0, 1].

In the limit as " ! 0 the steady-state equation emerges:

Ax = Bu.

This becomes a classical singular perturbation control problem.
Note however that, in this setting, the role that the controllability and
observability properties of the system play is much less clear than when
dealing with it as T ! 1.
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Conclusions

The linear finite dimensional theory linking time evolution and steady
state control problems can be extended to the PDE setting (heat and
wave equations) under suitable controllability and observability
assumptions that are by now well understood.

The extension of this theory to the nonlinear setting is a widely open
subject.

This is particularly the case for models in aerodynamic optimal design.

Often times the controllability and observability assumptions needed
to link the time evolution and the steady state optimal control
problems are ignored when “reducing” one problem to the other.
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