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Motivation

Climate modelling

Climate modeling is a grand challenge computational problem, a
research topic at the frontier of computational science.

Simplified models for geophysical flows have been developed aim to:
capture the important geophysical structures, while keeping the
computational cost at a minimum.

Although successful in numerical weather prediction, these models
have a prohibitively high computational cost in climate modeling.

Xu Wang, www.ima.umn.edu/ wangzhu/

Enrique Zuazua (BCAM) Long Time Numerics and Control Essaouira, October 2013 4 / 52



Motivation

Thames barrier

The Thames Barrier’s purpose is to prevent London from being
flooded by exceptionally high tides and storm surges.
A storm surge generated by low pressure in the Atlantic Ocean, past
the north of Scotland may then be driven into the shallow waters of
the North Sea. The surge tide is funnelled down the North Sea which
narrows towards the English Channel and the Thames Estuary. If the
storm surge coincides with a spring tide, dangerously high water levels
can occur in the Thames Estuary. This situation combined with
downstream flows in the Thames provides the triggers for flood
defence operations.
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Motivation

Tsunamis

Some isolated waves (solitons) are large and travel without loss of
energy.

This is the case of tsunamis and rogue waves.

Warning: Hence, there is no use trying sending a counterwave to stop a
tsunami!
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Motivation

Sonic boom

Goal: the development of supersonic aircraft that are sufficiently quiet
so that they can be allowed to fly supersonically over land.
The pressure signature created by the aircraft must be such that,
when it reaches the ground, (a) it can barely be perceived by the
human ear, and (b) it results in disturbances to man-made structures
that do not exceed the threshold of annoyance for a significant
percentage of the population.

Juan J. Alonso and Michael R. Colonno, Multidisciplinary Optimization
with Applications to Sonic-Boom Minimization, Annu. Rev. Fluid Mech.

2012, 44:505 – 26.
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Long time numerical simulations

Geometric integration

Numerical integration of the pendulum
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Long time numerical simulations

Joint work with L. Ignat & A. Pozo

Consider the 1-D conservation law with or without viscosity:

ut +
[
u2
]
x

= εuxx , x ∈ R, t > 0.

Then:

If ε = 0, u(·, t) ∼ N(·, t) as t →∞;

If ε > 0, u(·, t) ∼ uM(·, t) as t →∞,

uM is the constant sign self-similar solution of the viscous Burgers
equation (defined by the mass M of u0), while N is the so-called
hyperbolic N-wave, defined as:

N(x , t) :=

{
x
t , if − 2(pt)

1
2 < x < (2qt)

1
2

0 otherwise

p := −2 min
y∈R

∫ y

∞
u0(x)dx , q := 2 max

y∈R

∫ y

∞
u0(x)dx
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Long time numerical simulations

4 L. I. IGNAT, A. POZO, E. ZUAZUA

Figure 1. Di↵usive wave and N-wave evaluated at t = 10, with �x = 1/10,
M� = 1/10, p� = 1/10 and q� = 1/5.

The rest of this paper is divided as follows: in Section 2 we present some classical facts about
the numerical approximation of one-dimensional conservation laws and obtain preliminary results
that will be used in the proof of the main results of this paper. In Section 3 we prove the main
result, Theorem 1.1, and we illustrate it in Section 4 with a numerical simulation. In Section
5, we discuss the approximation through similarity variables and compare the results to the
approximations obtained directly from the physical ones. Finally, in Section 6 we give some
ideas about how to generalize the results to other numerical schemes and to more general fluxes
(uniformly convex or odd ones).

2. Preliminaries

In this part, following [3] and [7], we recall a few of the well-known results about numerical
schemes for 1D scalar conservation laws. We obtain some new results that will be used in
Section 3 in the proof of Theorem 1.1. We restrict our attention to the Burgers equation, i.e.,
the nonlinear term f is given by

f(u) =
u2

2
.

More general results will be discussed in Section 5 for uniformly convex fluxes and odd fluxes.
First, given a time-step �t and a uniform spatial grid � with space increment �x, we approxi-
mate the conservation law

(2.1)

(
ut +

⇣
u2

2

⌘
x

= 0, x 2 R, t > 0,

u(x, 0) = u0(x), x 2 R,

by an explicit di↵erence scheme of the form:

(2.2) un+1
j = H(un

j�k, . . . , u
n
j+k), 8n � 0, j 2 Z,

where H : R2k+1 ! R, k � 1, is a continuous function and un
j denotes the approximation of

the exact solution u at the node (n�t, j�x). Assuming that there exists a continuous function
g : R2k ! R, called numerical flux, such that

H(u�k, . . . , uk) = u0 � � [g(u�k+1, . . . , uk) � g(u�k, . . . , uk�1)] , � = �t/�x,
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Long time numerical simulations

Conservative schemes

Let us consider now numerical approximation schemes





un+1
j = ujn −

∆t

∆x

(
gn
j+1/2 − gn

j−1/2

)
, j ∈ Z,n > 0.

u0
j = 1

∆x

∫ xj+1/2

xj−1/2
u0(x)dx , j ∈ Z,

The approximated solution u∆ is given by

u∆(t, x) = unj , xj−1/2 < x < xj+1/2, tn ≤ t < tn+1,

where tn = n∆t and xj+1/2 = (j + 1
2 )∆x .

Is the large tine dynamics of these discrete systems, a discrete version of
the continuous one?
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Long time numerical simulations

3-point conservative schemes

1 Lax-Friedrichs

gLF (u, v) =
u2 + v2

4
− ∆x

∆t

(
v − u

2

)
,

2 Engquist-Osher

gEO(u, v) =
u(u + |u|)

4
+

v(v − |v |)
4

,

3 Godunov

gG (u, v) =





min
w∈[u,v ]

w2

2 , if u ≤ v ,

max
w∈[v ,u]

w2

2 , if v ≤ u.
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Long time numerical simulations

Numerical viscosity

We can rewrite three-point monotone schemes in the form

un+1
j − unj

∆t
+

(unj+1)2 − (unj−1)2

4∆x
= R(unj , u

n
j+1)− R(unj−1, u

n
j )

where the numerical viscosity R can be defined in a unique manner as

R(u, v) =
Q(u, v)(v − u)

2
=
λ

2

(u2

2
+

v2

2
− 2g(u, v)

)
.

For instance:

RLF (u, v) =
v − u

2
,

REO(u, v) =
λ

4
(v |v | − u|u|),

RG (u, v) =





λ
4 sign(|u| − |v |)(v2 − u2), v ≤ 0 ≤ u,

λ
4 (v |v | − u|u|), elsewhere.

Enrique Zuazua (BCAM) Long Time Numerics and Control Essaouira, October 2013 14 / 52



Long time numerical simulations

Properties

These three schemes are well-known to satisfy the following properties:

They converge to the entropy solution

They are monotonic

They preserve the total mass of solutions

They are OSLC consistent:

unj−1 − unj+1

2∆x
≤ 2

n∆t

L1 → L∞ decay with a rate O(t−1/2)

Similarly they verify uniform BV loc estimates
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Long time numerical simulations

Main result

Theorem (Lax-Friedrichs scheme)

Consider u0 ∈ L1(R) and ∆x and ∆t such that λ
∣∣∣un
∣∣∣
∞,∆
≤ 1,

λ = ∆t/∆x . Then, for any p ∈ [1,∞), the numerical solution u∆ given by
the Lax-Friedrichs scheme satisfies

lim
t→∞

t
1
2

(1− 1
p

)
∣∣∣u∆(t)− w(t)

∣∣∣
Lp(R)

= 0,

where the profile w = wM∆
is the unique solution of




wt +

(
w2

2

)
x

= (∆x)2

2 wxx , x ∈ R, t > 0,

w(0) = M∆δ0,

with M∆ =
∫
R u0

∆.
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Long time numerical simulations

Main result

Theorem (Engquist-Osher and Godunov schemes)

Consider u0 ∈ L1(R) and ∆x and ∆t such that λ
∣∣∣un
∣∣∣
∞,∆
≤ 1,

λ = ∆t/∆x . Then, for any p ∈ [1,∞), the numerical solutions u∆ given
by Engquist-Osher and Godunov schemes satisfy the same asymptotic
behavior but for the hyperbolic N − wave w = wp∆,q∆

unique solution of





wt +
(
w2

2

)
x

= 0, x ∈ R, t > 0,

w(0) = M∆δ0, lim
t→0

∫ x

0
w(t, z)dz =





0, x < 0,

−p∆, x = 0,

q∆ − p∆, x > 0,

with M∆ =
∫
R u0

∆ and
p∆ = −minx∈R

∫ x
−∞ u0

∆(z)dz and q∆ = maxx∈R
∫∞
x u0

∆(z)dz .
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Long time numerical simulations

Example

Let us consider the inviscid Burgers equation with initial data

u0(x) =





−0.05, x ∈ [−1, 0],

0.15, x ∈ [0, 2],

0, elsewhere.

The parameters that describe the asymptotic N-wave profile are:

M = 0.25 , p = 0.05 and q = 0.3.

We take ∆x = 0.1 as the mesh size for the interval [−350, 800] and
∆t = 0.5. Solution to the Burgers equation at t = 105:
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Long time numerical simulations
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Long time numerical simulations

Similarity variables

Let us consider the change of variables given by:

s = ln(t + 1), ξ = x/
√
t + 1, w(ξ, s) =

√
t + 1 u(x , t),

which turns the continuous Burgers equation into

ws +

(
1

2
w2 − 1

2
ξw

)

ξ

= 0, ξ ∈ R, s > 0.

The asymptotic profile of the N-wave becomes a steady-state solution:

Np,q(ξ) =

{
ξ, −√2p < ξ <

√
2q,

0, elsewhere,
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Long time numerical simulations

Examples

Convergence of the numerical solution using Engquist-Osher scheme
(circle dots) to the asymptotic N-wave (solid line). We take ∆ξ = 0.01
and ∆s = 0.0005.
Snapshots at s = 0, s = 2.15, s = 3.91, s = 6.55, s = 20 and s = 100.
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Long time numerical simulations

Examples

Numerical solution using the Lax-Friedrichs scheme (circle dots), taking
∆ξ = 0.01 and ∆s = 0.0005. The N-wave (solid line) is not reached, as it
converges to the diffusion wave.
Snapshots at s = 0, s = 2.15, s = 3.91, s = 6.55, s = 20 and s = 100.
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Long time numerical simulations

Physical vs. Similarity variables

Comparison of numerical and exact solutions at t = 1000. We choose ∆ξ

such that the
∣∣∣ ·
∣∣∣
1,∆

error is similar. The time-steps are ∆t = ∆x/2 and

∆s = ∆ξ/20, respectively, enough to satisfy the CFL condition.
For ∆x = 0.1:

Nodes Time-steps
∣∣∣ ·
∣∣∣
1,∆

∣∣∣ ·
∣∣∣
2,∆

∣∣∣ ·
∣∣∣
∞,∆

Physical 1501 19987 0.0867 0.0482 0.0893

Similarity 215 4225 0.0897 0.0332 0.0367

For ∆x = 0.01:

Nodes Time-steps
∣∣∣ ·
∣∣∣
1,∆

∣∣∣ ·
∣∣∣
2,∆

∣∣∣ ·
∣∣∣
∞,∆

Physical 15001 199867 0.0093 0.0118 0.0816

Similarity 2000 39459 0.0094 0.0106 0.0233
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Inverse design for the Burgers equation

The problem of inverse design, motivated by the problem of sonic-boom,
and more precisely by the determination of the profile of the initial
signature so to make sure it is acceptable when reaching earth, according
to present regulations, can be formulated as an optimization or control
problem in which the initial datum of the PDE under consideration.

Juan J. Alonso and Michael R. Colonno, Multidisciplinary Optimization
with Applications to Sonic-Boom Minimization, Annu. Rev. Fluid Mech.

2012, 44:505 – 26.
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Inverse design for the Burgers equation

Consider the minimization of the functional

J(u0) =
1

2

∫ ∞

−∞
|u(x ,T )− ud(x)|2dx .

associated to the solutions of the Burgers equation

{
∂tu + ∂x(u2)− εuxx = 0

u(x , 0) = u0(x).

The minimization problem above can be proved to have a solution for a
large class of targets and within reasonable classes of initial data.
What about its numerical computation?
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Inverse design for the Burgers equation

The discrete approach

The discrete version of the functional:

J∆(u0
∆) =

∆x

2

∞∑

j=−∞
(uN+1

j − udj )2,

where u∆ = {ukj } solves a numerical discretization of the PDE based on
some of the conservative schemes for conservation laws mentioned above.

In view of the very different asymptotic behavior of numerical solutions in
large times, we also expect a different performance of the discrete
optimization achieved.
In fact, we expect Engquist-Osher to perform well, but Lax-Friedrisch to
have difficulties to recover the correct inverse design.
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Inverse design for the Burgers equation
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Inverse design for the Burgers equation

Is the iterative algorithm trapped in a local minimizer?

Enrique Zuazua (BCAM) Long Time Numerics and Control Essaouira, October 2013 29 / 52



Inverse design for the Burgers equation

This is what the IPOPT software do (N. Allihverdi)
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Control in the presence of shocks

A new viewpoint: Solution = Solution + shock location. Then the pair
(u, ϕ) solves:





∂tu + ∂x(
u2

2
) = 0, in Q− ∪ Q+,

ϕ′(t)[u]ϕ(t) =
[
u2/2

]
ϕ(t)

, t ∈ (0,T ),

ϕ(0) = ϕ0,

u(x , 0) = u0(x), in {x < ϕ0} ∪ {x > ϕ0}.
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Control in the presence of shocks

In the inviscid case, the simple and “natural” rule

∂u

∂t
+ u

∂u

∂x
= 0→ ∂δu

∂t
+ δu

∂u

∂x
+ u

∂δu

∂x
= 0

breaks down in the presence of shocks

δu = discontinuous, ∂u
∂x = Dirac delta ⇒ δu ∂u∂x ????

The difficulty may be overcame with a suitable notion of measure valued
weak solution using Volpert’s definition of conservative products and
duality theory (Bouchut-James, Godlewski-Raviart,...)
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Control in the presence of shocks

The corresponding linearized system is:





∂tδu + ∂x(uδu) = 0, in Q− ∪ Q+,

δϕ′(t)[u]ϕ(t) + δϕ(t)
(
ϕ′(t)[ux ]ϕ(t) − [uxu]ϕ(t)

)

+ϕ′(t)[δu]ϕ(t) − [uδu]ϕ(t) = 0, in (0,T ),

δu(x , 0) = δu0, in {x < ϕ0} ∪ {x > ϕ0},
δϕ(0) = δϕ0,

Majda (1983), Bressan-Marson (1995), Godlewski-Raviart (1999),
Bouchut-James (1998), Giles-Pierce (2001), Bardos-Pironneau (2002),
Ulbrich (2003), ...
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Control in the presence of shocks

Continuous versus discrete

Two approaches:

Continuous: PDE+ Optimal shape design → implement that
numerically.

Discrete: Replace PDE and optimal design problem by discrete
version → Apply discrete tools

Do these processes lead to the same result?

OPTIMAL DESIGN + NUMERICS
=

NUMERICS + OPTIMAL DESIGN?
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Control in the presence of shocks

Discrete: Discretization + gradient

Advantages: Discrete clouds of values. No shocks. Automatic
differentiation, ...

Drawbacks:

”Invisible” geometry.

Scheme dependent.

Continuous: Continuous gradient + discretization.

Advantages: Simpler computations. Solver independent. Shock
detection.

Drawbacks:

Yields approximate gradients.

Subtle if shocks.
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Control in the presence of shocks

A new method

A new method: Splitting + alternating descent algorithm.
C. Castro, F. Palacios, E. Z., M3AS, 2008.
Ingredients:

The shock location is part of the state.

State = Solution as a function + Geometric location of shocks.

Alternate within the descent algorithm:

Shock location and smooth pieces of solutions should be treated
differently;
When dealing with smooth pieces most methods provide similar results;
Shocks should be handeled by geometric tools, not only those based on
the analytical solving of equations.

Lots to be done: Pattern detection, image processing, computational
geometry,... to locate, deform shock locations,....
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Control in the presence of shocks

An example: Inverse design of initial data

Consider

J(u0) =
1

2

∫ ∞

−∞
|u(x ,T )− ud(x)|2dx .

ud = step function.
Gateaux derivative:

δJ =

∫

{x<ϕ0}∪{x>ϕ0}
p(x , 0)δu0(x) dx + q(0)[u]ϕ0δϕ0,

(p, q) = adjoint state




−∂tp − u∂xp = 0, in Q− ∪ Q+,
[p]Σ = 0,
q(t) = p(ϕ(t), t), in t ∈ (0,T )
q′(t) = 0, in t ∈ (0,T )
p(x ,T ) = u(x ,T )− ud , in {x < ϕ(T )} ∪ {x > ϕ(T )}
q(T ) =

1
2 [(u(x ,T )−ud )2]

ϕ(T )

[u]ϕ(T )
.
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Control in the presence of shocks

The gradient is twofold= variation of the profile + shock location.

The adjoint system is the superposition of two systems = Linearized
adjoint transport equation on both sides of the shock + Dirichlet
boundary condition along the shock that propagates along
characteristics and fills all the region not covered by the adjoint
equations.
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Control in the presence of shocks

State u and adjoint state p when u develops a shock:
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Control in the presence of shocks

The multi-dimensional case: Joint work with R. Lecarós

Consider the multi-dimensional scalar conservation, in the presence of one
single shock curve:

∂tu + divx(f (u)) = 0, in Q− ∪ Q+

[u]ntΣ + [f (u)]nxΣ = 0, on Σ
u(x , 0) = u0(x), x ∈ R2 \ Σ0,

The linearized system reads

∂tδu + divx(f ′(u)δu) = 0, in Q− ∪ Q+

divΣ

(
δϕ
∣∣∣nxΣ
∣∣∣ ([f (u)]Σt , [u]Σt )

)
= ([f ′(u)δu]Σt , [δu]Σt ) · nΣ, on Σ

δu(x , 0) = δu0(x), x ∈ R2 \ Σ0

δϕ(x , 0) = δϕ0(x), x ∈ Σ0
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Control in the presence of shocks

The Gateaux derivative of J can be written as follows

δJ(u0)[δu0, δϕ0] =

∫

R2

p(x , 0)δu0dx −
∫

Σ0

q(x , 0)[u]Σ0δϕ0dσ,

where the adjoint state pair (p, q) satisfies the system

∂tp + f ′(u) · ∇p = 0, in Q− ∪ Q+

[p]Σt = 0, on Σ
q(x , t) = p(x , t), (x , t) ∈ Σ([f (u)]Σt , [u]Σt ) · ∇Σq

= 0, on Σ
p(x ,T ) = u(x ,T )− ud(x), x ∈ R2 \ ΣT

q(x ,T ) =
[(u(·,T )−ud )2/2]

ΣT

[u]
ΣT

, x ∈ ΣT .
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Control in the presence of shocks

Numerical experiment. Testing the alternating descent method.

The time is T = 0.2. The equation

ut +

(
u2

2

)

x

+

(
u4

4

)

y

= 0 (1)

u0(x , y) =

{
0.4 x ≤ 0.2 ∧ y ≤ 0.4
0 other wise

and ud is the solution of (2) at time t = T , with initial datum u∗, given by

u∗(x , y) =

{
0.7 x ≤ 0.8 ∧ y ≤ 0.75
0 other wise
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Control in the presence of shocks

The discrete approach

Initial condition u0 Solution at time T , uT
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Control in the presence of shocks

The alternating descent method in 2D

Initial condition u0 Solution at time T , uT
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Control in the presence of shocks

Comparison
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Control in the presence of shocks

Comparison

ADM: u0, iteration k = 43 DM: u0, iteration k = 99

ADM: uT , iteration k = 43 DM: uT , iteration k = 99
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Control in the presence of shocks

Numerical experiment. Testing the alternating descent method.

The time is T = 0.2. The equation

ut +

(
u2

2

)

x

+

(
u4

4

)

y

= 0 (2)

u0(x , y) =

{
0.4 x ≤ 0.3 ∧ y ≤ 0.3
0 other wise

and ud is the solution of (2) at time t = T , with initial datum u∗, given by

u∗(x , y) =





0.7 x2 + y2 ≤ (0.7)2, x , y ≥ 0
0.7 x ≤ 0.7, y ≤ 0
0.7 y ≤ 0.7, x ≤ 0
0 other wise
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Control in the presence of shocks

The discrete approach

Initial condition u0 Solution at time T , uT
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Control in the presence of shocks

The alternating descent method in 2D

Initial condition u0 Solution at time T , uT
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Control in the presence of shocks

Comparison between the methods
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Control in the presence of shocks

Comparison between the methods

ADM: u0, iteration k = 43 DM: u0, iteration k = 99

ADM: uT , iteration k = 43 DM: uT , iteration k = 99
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Conclusions

Lots to be done on:

Development of numerical algorithms preserving large time
asymptotics for nonlinear PDEs (other works of our team on
dispersive equations, dissipative wave equations,...)

The analysis of how time-evolution controls are approximated by
these numerical methods.

Rigorous analysis of linearization around shocks, numerical
approximation of the linearized system, etc.

Use of geometric methods in combination with PDE ones to
implement descent algorithms with moving shocks.

Important applications.

All this needs to be made in a multidisciplinary environment so to assure
impact on Engineering and Sciences
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