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Universidad Autónoma de Madrid

cara@us.es, enrique.zuazua@uam.es

Abstract

These notes are devoted to present some of the mathematical
milestones of Control Theory. To do that, we first overview its origins
and some of the main mathematical achievements. Then, we discuss the
main domains of Sciences and Technologies where Control Theory arises
and applies. This forces us to address modelling issues and to distinguish
between the two main control theoretical approaches, controllability and
optimal control, discussing the advantages and drawbacks of each of them.

In order to give adequate formulations of the main questions, we have
introduced some of the most elementary mathematical material, avoiding
unnecessary technical difficulties and trying to make the paper accessible
to a large class of readers.

The subjects we address range from the basic concepts related to
the dynamical systems approach to (linear and nonlinear) Mathematical
Programming and Calculus of Variations. We also present a simplified
version of the outstanding results by Kalman on the controllability of
linear finite dimensional dynamical systems, Pontryaguin’s maximum
principle and the principle of dynamical programming.

Some aspects related to the complexity of modern control systems,
the discrete versus continuous modelling, the numerical approximation
of control problems and its control theoretical consequences are also
discussed.

Finally, we describe some of the major challenging applications in
Control Theory for the XXI Century. They will probably influence
strongly the development of this discipline in the near future.

*The authors have been partially financed by D.G.E.S.-España, respectively
Grants BFM2000-1317 and BFM2002-03345.
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1. Introduction

This article is devoted to present some of the mathematical milestones of
Control Theory. We will focus on systems described in terms of ordinary
differential equations. The control of (deterministic and stochastic) partial
differential equations remains out of our scope. However, it must be underlined
that most ideas, methods and results presented here do extend to this more
general setting, which leads to very important technical developments.

The underlying idea that motivated this article is that Control Theory
is certainly, at present, one of the most interdisciplinary areas of research.
Control Theory arises in most modern applications. The same could be
said about the very first technological discoveries of the industrial revolution.
On the other hand, Control Theory has been a discipline where many
mathematical ideas and methods have melt to produce a new body of important
Mathematics. Accordingly, it is nowadays a rich crossing point of Engineering
and Mathematics.

Along this paper, we have tried to avoid unnecessary technical difficulties,
to make the text accessible to a large class of readers. However, in order to
introduce some of the main achievements in Control Theory, a minimal body
of basic mathematical concepts and results is needed. We develop this material
to make the text self-contained.

These notes contain information not only on the main mathematical results
in Control Theory, but also about its origins, history and the way applications
and interactions of Control Theory with other Sciences and Technologies have
conducted the development of the discipline.

The plan of the paper is the following. Section 2 is concerned with the
origins and most basic concepts. In Section 3 we study a simple but very
interesting example: the pendulum. As we shall see, an elementary analysis of
this simple but important mechanical system indicates that the fundamental
ideas of Control Theory are extremely meaningful from a physical viewpoint.

In Section 4 we describe some relevant historical facts and also some
important contemporary applications. There, it will be shown that Control
Theory is in fact an interdisciplinary subject that has been strongly involved in
the development of the contemporary society.

In Section 5 we describe the two main approaches that allow to give rigorous
formulations of control problems: controllability and optimal control. We also
discuss their mutual relations, advantages and drawbacks.

In Sections 6 and 7 we present some basic results on the controllability of
linear and nonlinear finite dimensional systems. In particular, we revisit the
Kalman approach to the controllability of linear systems, and we recall the use
of Lie brackets in the control of nonlinear systems, discussing a simple example
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of a planar moving square car.
In Section 8 we discuss how the complexity of the systems arising in modern

technologies affects Control Theory and the impact of numerical approximations
and discrete modelling, when compared to the classical modelling in the context
of Continuum Mechanics.

In Section 9 we describe briefly two beautiful and extremely important
challenging applications for Control Theory in which, from a mathematical
viewpoint, almost all remains to be done: laser molecular control and the control
of floods.

In Section 10 we present a list of possible future applications and lines of
development of Control Theory: large space structures, Robotics, biomedical
research, etc.

Finally, we have included two Appendices, where we recall briefly two of
the main principles of modern Control Theory, namely Pontryagin’s maximum
principle and Bellman’s dynamical programming principle.

2. Origins and basic ideas, concepts and ingredients

The word control has a double meaning. First, controlling a system can be
understood simply as testing or checking that its behavior is satisfactory. In a
deeper sense, to control is also to act, to put things in order to guarantee that
the system behaves as desired.

S. Bennet starts the first volume of his book [2] on the history of Control
Engineering quoting the following sentence of Chapter 3, Book 1, of the
monograph “Politics” by Aristotle:

“. . . if every instrument could accomplish its own work, obeying or
anticipating the will of others . . . if the shuttle weaved and the pick
touched the lyre without a hand to guide them, chief workmen would
not need servants, nor masters slaves.”

Figure 1: Aristotle
(384–322 B.C.).

This sentence by Aristotle describes in a rather
transparent way the guiding goal of Control Theory:
the need of automatizing processes to let the human
being gain in liberty, freedom, and quality of life.

Let us indicate briefly how control problems are
stated nowadays in mathematical terms. To fix ideas,
assume we want to get a good behavior of a physical
system governed by the state equation

A(y) = f(v). (1)

Here, y is the state, the unknown of the system
that we are willing to control. It belongs to a vector
space Y . On the other hand, v is the control. It
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belongs to the set of admissible controls Uad . This is the variable that we can
choose freely in Uad to act on the system.

Let us assume that A : D(A) ⊂ Y 7→ Y and f : Uad 7→ Y are two given
(linear or nonlinear) mappings. The operator A determines the equation that
must be satisfied by the state variable y, according to the laws of Physics. The
function f indicates the way the control v acts on the system governing the
state. For simplicity, let us assume that, for each v ∈ Uad , the state equation
(1) possesses exactly one solution y = y(v) in Y . Then, roughly speaking, to
control (1) is to find v ∈ Uad such that the solution to (1) gets close to the
desired prescribed state. The “best” among all the existing controls achieving
the desired goal is frequently referred to as the optimal control.

This mathematical formulation might seem sophisticated or even obscure
for readers not familiar with this topic. However, it is by now standard and it
has been originated naturally along the history of this rich discipline. One of
the main advantages of such a general setting is that many problems of very
different nature may fit in it, as we shall see along this work.

As many other fields of human activities, the discipline of Control existed
much earlier than it was given that name. Indeed, in the world of living species,
organisms are endowed with sophisticated mechanisms that regulate the various
tasks they develop. This is done to guarantee that the essential variables are
kept in optimal regimes to keep the species alive allowing them to grow, develop
and reproduce.

Thus, although the mathematical formulation of control problems is
intrinsically complex, the key ideas in Control Theory can be found in Nature,
in the evolution and behavior of living beings.

The first key idea is the feedback concept. This term was incorporated to
Control Engineering in the twenties by the engineers of the “Bell Telephone
Laboratory” but, at that time, it was already recognized and consolidated in
other areas, such as Political Economics.

Essentially, a feedback process is the one in which the state of the system
determines the way the control has to be exerted at any time. This is related
to the notion of real time control, very important for applications. In the
framework of (1), we say that the control u is given by a feedback law if we
are able to provide a mapping G : Y 7→ Uad such that

u = G(y), where y = y(u), (2)

i.e. y solves (1) with v replaced by u.
Nowadays, feedback processes are ubiquitous not only in Economics, but

also in Biology, Psychology, etc. Accordingly, in many different related areas,
the cause-effect principle is not understood as a static phenomenon any more,
but it is rather being viewed from a dynamical perspective. Thus, we can speak
of the cause-effect-cause principle. See [33] for a discussion on this and other
related aspects.

The second key idea is clearly illustrated by the following sentence by
H.R. Hall in [17] in 1907 and that we have taken from [2]:
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“It is a curious fact that, while political economists recognize that
for the proper action of the law of supply and demand there must be
fluctuations, it has not generally been recognized by mechanicians in
this matter of the steam engine governor. The aim of the mechanical
economist, as is that of the political economist, should be not to do
away with these fluctuations all together (for then he does away with
the principles of self-regulation), but to diminish them as much as
possible, still leaving them large enough to have sufficient regulating
power.”

The need of having room for fluctuations that this paragraph evokes is
related to a basic principle that we apply many times in our daily life. For
instance, when driving a car at a high speed and needing to brake, we usually
try to make it intermittently, in order to keep the vehicle under control at any
moment. In the context of human relationships, it is also clear that insisting
permanently in the same idea might not be precisely the most convincing
strategy.

The same rule applies for the control of a system. Thus, to control a system
arising in Nature or Technology, we do not have necessarily to stress the system
and drive it to the desired state immediately and directly. Very often, it is much
more efficient to control the system letting it fluctuate, trying to find a harmonic
dynamics that will drive the system to the desired state without forcing it too
much. An excess of control may indeed produce not only an inadmissible cost
but also irreversible damages in the system under consideration.

Another important underlying notion in Control Theory is Optimization.
This can be regarded as a branch of Mathematics whose goal is to improve
a variable in order to maximize a benefit (or minimize a cost). This is
applicable to a lot of practical situations (the variable can be a temperature,
a velocity field, a measure of information, etc.). Optimization Theory and
its related techniques are such a broad subject that it would be impossible
to make a unified presentation. Furthermore, a lot of recent developments in
Informatics and Computer Science have played a crucial role in Optimization.
Indeed, the complexity of the systems we consider interesting nowadays makes
it impossible to implement efficient control strategies without using appropriate
(and sophisticated) software.

In order to understand why Optimization techniques and Control Theory
are closely related, let us come back to (1). Assume that the set of admissible
controls Uad is a subset of the Banach space U (with norm ‖ · ‖U ) and the state
space Y is another Banach space (with norm ‖ · ‖Y ). Also, assume that the
state yd ∈ Y is the preferred state and is chosen as a target for the state of the
system. Then, the control problem consists in finding controls v in Uad such
that the associated solution coincides or gets close to yd.

It is then reasonable to think that a fruitful way to choose a good control v
is by minimizing a cost function of the form

J(v) =
1
2
‖y(v)− yd‖2Y ∀v ∈ Uad (3)
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or, more generally,

J(v) =
1
2
‖y(v)− yd‖2Y +

µ

2
‖v‖2U ∀v ∈ Uad , (4)

where µ ≥ 0.
These are (constrained) extremal problems whose analysis corresponds to

Optimization Theory.
It is interesting to analyze the two terms arising in the functional J in (4)

when µ > 0 separately, since they play complementary roles. When minimizing
the functional in (4), we are minimizing the balance between these two terms.
The first one requires to get close to the target yd while the second one penalizes
using too much costly control. Thus, roughly speaking, when minimizing J we
are trying to drive the system to a state close to the target yd without too much
effort.

We will give below more details of the connection of Control Theory and
Optimization below.

So far, we have mentioned three main ingredients arising in Control Theory:
the notion of feedback, the need of fluctuations and Optimization. But of
course in the development of Control Theory many other concepts have been
important.

One of them is Cybernetics. The word “cybernétique” was proposed by the
French physicist A.-M. Ampère in the XIX Century to design the nonexistent
science of process controlling. This was quickly forgotten until 1948, when
N. Wiener chose “Cybernetics” as the title of his book.

Figure 2: Norbert
Wiener (1894–1964).

Wiener defined Cybernetics as “the science of
control and communication in animals and machines”.
In this way, he established the connection between
Control Theory and Physiology and anticipated that,
in a desirable future, engines would obey and imitate
human beings.

At that time this was only a dream but now
the situation is completely different, since recent
developments have made possible a large number of
new applications in Robotics, Computer-Aided Design,
etc. (see [43] for an overview). Today, Cybernetics is
not a dream any more but an ubiquitous reality. On
the other hand, Cybernetics leads to many important
questions that are relevant for the development of our
society, very often in the borderline of Ethics and
Philosophy. For instance,

Can we be inspired by Nature to create better engines and machines ?

Or
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Is the animal behavior an acceptable criterium to judge the
performance of an engine ?

Many movies of science fiction describe a world in which machines do
not obey any more to humans and humans become their slaves. This is the
opposite situation to the one Control Theory has been and is looking for. The
development of Science and Technology is obeying very closely to the predictions
made fifty years ago. Therefore, it seems desirable to deeply consider and revise
our position towards Cybernetics from now on, many years ahead, as we do
permanently in what concerns, for instance, Genetics and the possibilities it
provides to intervene in human reproduction.

3. The pendulum

We will analyze in this Section a very simple and elementary control problem
related to the dynamics of the pendulum.

Figure 3: The simple
pendulum.

The analysis of this model will allow us to
present the most relevant ideas in the control of
finite dimensional systems, that, as we said above,
are essential for more sophisticated systems too. In
our presentation, we will closely follow the book by
E. Sontag [46].

The problem we discuss here, far from being
purely academic, arises in many technological
applications and in particular in Robotics, where the
goal is to control a gyratory arm with a motor located
at one extreme connecting the arm to the rest of the
structure.

In order to model this system, we assume that
the total mass m of the arm is located at the free
extreme and the bar has unit length. Ignoring the
effect of friction, we write

mθ̈(t) = −mg sin θ(t) + v(t), (5)

which is a direct consequence of Newton’s law. Here,
θ = θ(t) is the angle of the arm with respect to the vertical axis measured
counterclockwise, g is the acceleration due to gravity and u is the applied
external torsional momentum. The state of the system is (θ, θ̇), while v = v(t)
is the control (see Fig. 3).

To simplify our analysis, we also assume that m = g = 1. Then, (5) becomes:

θ̈(t) + sin θ(t) = v(t). (6)

The vertical stationary position (θ = π, θ̇ = 0) is an equilibrium
configuration in the absence of control, i.e. with v ≡ 0. But, obviously, this
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is an unstable equilibrium. Let us analyze the system around this configuration,
to understand how this instability can be compensated by means of the applied
control force v.

Taking into account that sin θ ∼ π − θ near θ = π, at first approximation,
the linearized system with respect to the variable ϕ = θ − π can be written in
the form

ϕ̈− ϕ = v(t). (7)

The goal is then to drive (ϕ, ϕ̇) to the desired state (0, 0) for all small initial
data, without making the angle and the velocity too large along the controlled
trajectory.

The following control strategy is in agreement with common sense: when
the system is to the left of the vertical line, i.e. when ϕ = θ − π > 0, we push
the system towards the right side, i.e. we apply a force v with negative sign; on
the other hand, when ϕ < 0, it seems natural to choose v > 0.

This suggests the following feedback law, in which the control is proportional
to the state:

v = −αϕ, with α > 0. (8)

In this way, we get the closed loop system

ϕ̈ + (α− 1)ϕ = 0. (9)

It is important to understand that, solving (9), we simultaneously obtain
the state (ϕ, ϕ̇) and the control v = −αϕ. This justifies, at least in this case,
the relevance of a feedback law like (8).

The roots of the characteristic polynomial of the linear equation (9) are
z = ±√1− α. Hence, when α > 1, the nontrivial solutions of this differential
equation are oscillatory. When α < 1, all solutions diverge to ±∞ as t → ±∞,
except those satisfying

ϕ̇(0) = −√1− α ϕ(0).

Finally, when α = 1, all nontrivial solutions satisfying ϕ̇(0) = 0 are constant.
Thus, the solutions to the linearized system (9) do not reach the desired

configuration (0, 0) in general, independently of the constant α we put in (8).
This can be explained as follows. Let us first assume that α < 1. When

ϕ(0) is positive and small and ϕ̇(0) = 0, from equation (9) we deduce that
ϕ̈(0) > 0. Thus, ϕ and ϕ̇ grow and, consequently, the pendulum goes away
from the vertical line. When α > 1, the control acts on the correct direction
but with too much inertia.

The same happens to be true for the nonlinear system (6).
The most natural solution is then to keep α > 1, but introducing an

additional term to diminish the oscillations and penalize the velocity. In this
way, a new feedback law can be proposed in which the control is given as a
linear combination of ϕ and ϕ̇:

v = −αϕ− βϕ̇, with α > 1 and β > 0. (10)
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The new closed loop system is

ϕ̈ + βϕ̇ + (α− 1)ϕ = 0, (11)

whose characteristic polynomial has the following roots

−β ±
√

β2 − 4(α− 1)
2

. (12)

Now, the real part of the roots is negative and therefore, all solutions
converge to zero as t → +∞. Moreover, if we impose the condition

β2 > 4(α− 1), (13)

we see that solutions tend to zero monotonically, without oscillations.
This simple model is rich enough to illustrate some systematic properties of

control systems:

• Linearizing the system is an useful tool to address its control, although
the results that can be obtained this way are only of local nature.

• One can obtain feedback controls, but their effects on the system are
not necessarily in agreement with the very first intuition. Certainly, the
(asymptotic) stability properties of the system must be taken into account.

• Increasing dissipation one can eliminate the oscillations, as we have
indicated in (13).

In connection with this last point, notice however that, as dissipation
increases, trajectories converge to the equilibrium more slowly. Indeed, in (10),
for fixed α > 1, the value of β that minimizes the largest real part of a root of
the characteristic polynomial (11) is

β = 2
√

α− 1.

With this value of β, the associated real part is

σ∗ = −√α− 1

and, increasing β, the root corresponding to the plus sign increases and
converges to zero:

−β +
√

β2 − 4(α− 1)
2

> −√α− 1 ∀β > 2
√

α− 1 (14)

and
−β +

√
β2 − 4(α− 1)

2
→ 0− as β → +∞. (15)

This phenomenon is known as overdamping in Engineering and has to be taken
into account systematically when designing feedback mechanisms.
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At the practical level, implementing the control (10) is not so simple, since
the computation of v requires knowing the position ϕ and the velocity ϕ̇ at
every time.

Let us now describe an interesting alternative. The key idea is to evaluate
ϕ and ϕ̇ only on a discrete set of times

0, δ, 2δ, . . . , kδ, . . .

and modify the control at each of these values of t. The control we get this way
is kept constant along each interval [kδ, (k + 1)δ].

Computing the solution to system (7), we see that the result of applying the
constant control vk in the time interval [kδ, (k + 1)δ] is as follows:

(
ϕ(kδ + δ)
ϕ̇(kδ + δ)

)
= A

(
ϕ(kδ)
ϕ̇(kδ)

)
+ vk b,

where

A =
(

coshδ sinhδ
sin hδ coshδ

)
, b =

(
coshδ − 1

sinhδ

)
.

Thus, we obtain a discrete system of the form

xk+1 = (A + bf t)xk ,

where f is the vector such that

vk = f txk .

Observe that, if f is such that the matrix A + bf t is nilpotent, i.e.

[A + bf t]2 = 0,

then we reach the equilibrium in two steps. A simple computation shows that
this property holds if f t = (f1, f2), with

f1 =
1− 2 cos hδ

2(cos hδ − 1)
, f2 = −1 + 2 cos hδ

2 sin hδ
. (16)

The main advantage of using controllers of this form is that we get the
stabilization of the trajectories in finite time and not only asymptotically, as
t → +∞. The controller we have designed is a digital control and it is extremely
useful because of its robustness and the ease of its implementation.

The digital controllers we have built are similar and closely related to the
bang-bang controls we are going to describe now.

Once α > 1 is fixed, for instance α = 2, we can assume that

v = −2ϕ + w, (17)

so that (7) can be written in the form

ϕ̈ + ϕ = w. (18)
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This is Newton’s law for the vibration of a spring.
This time, we look for controls below an admissible cost. For instance, we

impose
|w(t)| ≤ 1 ∀t.

The function w = w(t) that, satisfying this constraint, controls the system in
minimal time, i.e. the optimal control, is necessarily of the form

w(t) = sgn(p(t)),

where η is a solution of
p̈ + p = 0.

This is a consequence of Pontryagin’s maximum principle (see Appendix 1 for
more details).

Therefore, the optimal control takes only the values ±1 and, in practice, it
is sufficient to determine the switching times at which the sign of the optimal
control changes.

In order to compute the optimal control, let us first compute the solutions
corresponding to the extremal controllers ±1. Using the new variables x1 and
x2 with x1 = ϕ and x2 = ϕ̇, this is equivalent to solve the systems

{
ẋ1 = x2

ẋ2 = −x1 + 1 (19)

and {
ẋ1 = x2

ẋ2 = −x1 − 1.
(20)

The solutions can be identified to the circumferences in the plane (x1, x2)
centered at (1, 0) and (−1, 0), respectively. Consequently, in order to drive
(18) to the final state (ϕ, ϕ̇)(T ) = (0, 0), we must follow these circumferences,
starting from the prescribed initial state and switching from one to another
appropriately.

For instance, assume that we start from the initial state (ϕ, ϕ̇)(0) = (ϕ0, ϕ1),
where ϕ0 and ϕ1 are positive and small (see Fig. 4). Then, we first take
w(t) = 1 and solve (19) for t ∈ [0, T1], where T1 is such that x2(T1) = 0, i.e. we
follow counterclockwise the arc connecting the points (ϕ0, ϕ1) and (x1(T1), 0)
in the (x1, x2) plane. In a second step, we take w(t) = −1 and solve (20)
for t ∈ [T1, T2], where T2 is such that (1 − x1(T2))2 + x2(T2)2 = 1. We thus
follow (again counterclockwise) the arc connecting the points (x1(T1), 0) and
(x1(T2), x2(T2)). Finally, we take w(t) = 1 and solve (19) for t ∈ [T2, T3], with
T3 such that x1(T3 = x2(T3) = 0.

Similar constructions of the control can be done when ϕ0 ≤ 1 or ϕ1 ≤ 0.
In this way, we reach the equilibrium (0, 0) in finite time and we obtain a

feedback mechanism
ϕ̈ + ϕ = F (ϕ, ϕ̇),
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Figure 4: The action of a bang-bang control.

where F is the function taking the value −1 above the switching curve and +1
below. In what concerns the original system (7), we have

ϕ̈− ϕ = −2ϕ + F (ϕ, ϕ̇).

The action of the control in this example shows clearly the suitability of
self-regulation mechanisms. If we want to lead the system to rest in a minimal
time, it is advisable to do it following a somewhat indirect path, allowing the
system to evolve naturally and avoiding any excessive forcing.

Bang-bang controllers are of high interest for practical purposes. Although
they might seem irregular and unnatural, they have the advantages of providing
minimal time control and being easy to compute.

As we said above, although the problem we have considered is very simple, it
leads naturally to some of the most relevant ideas of Control Theory: feedback
laws, overdamping, digital and bang-bang controls, etc.

4. History and contemporary applications

In this paper, we do not intend to make a complete overview of the history of
Control Theory, nor to address its connections with the philosophical questions
we have just mentioned. Without any doubt, this would need much more space.
Our intention is simply to recall some classical and well known results that
have to some extent influenced the development of this discipline, pointing out
several facts that, in our opinion, have been relevant for the recent achievements
of Control Theory.

Let us go back to the origins of Control Engineering and Control Theory
and let us describe the role this discipline has played in History.
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Figure 5: A Roman aqueduct.

Going backwards in time, we will easily conclude that Romans did use some
elements of Control Theory in their aqueducts. Indeed, ingenious systems of
regulating valves were used in these constructions in order to keep the water
level constant.

Some people claim that, in the ancient Mesopotamia, more than 2000 years
B.C., the control of the irrigation systems was also a well known art.

On the other hand, in the ancient Egypt the “harpenodaptai” (string
stretchers), were specialized in stretching very long strings leading to long
straight segments to help in large constructions. Somehow, this is an evidence
of the fact that in the ancient Egypt the following two assertions were already
well understood:

The shortest distance between two points is the straight line (which can be
considered to be the most classical assertion in Optimization and Calculus
of Variations);

This is equivalent to the following dual property: among all the paths
of a given length the one that produces the longest distance between its
extremes is the straight line as well.

The task of the “harpenodaptai” was precisely to build these “optimal curves”.
The work by Ch. Huygens and R. Hooke at the end of the XVII Century on

the oscillations of the pendulum is a more modern example of development in
Control Theory. Their goal was to achieve a precise measurement of time and
location, so precious in navigation.

These works were later adapted to regulate the velocity of windmills. The
main mechanism was based on a system of balls rotating around an axis, with
a velocity proportional to the velocity of the windmill. When the rotational
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velocity increased, the balls got farther from the axis, acting on the wings of
the mill through appropriate mechanisms.

Figure 6: J. Watt
(1736–1819).

J. Watt adapted these ideas when he invented the
steam engine and this constituted a magnificent step
in the industrial revolution. In this mechanism, when
the velocity of the balls increases, one or several valves
open to let the vapor scape. This makes the pressure
diminish. When this happens, i.e. when the pressure
inside the boiler becomes weaker, the velocity begins
to go down. The goal of introducing and using this
mechanism is of course to keep the velocity as close
as possible to a constant.

The British astronomer G. Airy was the first
scientist to analyze mathematically the regulating
system invented by Watt. But the first definitive
mathematical description was given only in the works
by J.C. Maxwell, in 1868, where some of the erratic
behaviors encountered in the steam engine were
described and some control mechanisms were proposed.

The central ideas of Control Theory gained soon a remarkable impact and,
in the twenties, engineers were already preferring the continuous processing and
using semi-automatic or automatic control techniques. In this way, Control
Engineering germinated and got the recognition of a distinguished discipline.

Figure 7: Watt’s 1781
steam engine (taken
from [50]).

In the thirties important progresses were made
on automatic control and design and analysis tech-
niques. The number of applications increased cover-
ing amplifiers in telephone systems, distribution sys-
tems in electrical plants, stabilization of aeroplanes,
electrical mechanisms in paper production, Chem-
istry, petroleum and steel Industry, etc.

By the end of that decade, two emerging
and clearly different methods or approaches were
available: a first method based on the use of
differential equations and a second one, of frequential
nature, based on the analysis of amplitudes and
phases of “inputs” and “outputs”.

By that time, many institutions took conscience of
the relevance of automatic control. This happened for
instance in the American ASME (American Society of

Mechanical Engineers) and the British IEE (Institution of Electrical Engineers).
During the Second World War and the following years, engineers and scientists
improved their experience on the control mechanisms of plane tracking and
ballistic missiles and other designs of anti-aircraft batteries. This produced an
important development of frequential methods.
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Figure 8: A primitive steam engine (taken from [50]).

After 1960, the methods and ideas mentioned above began to be considered
as part of “classical” Control Theory. The war made clear that the models
considered up to that moment were not accurate enough to describe the
complexity of the real word. Indeed, by that time it was clear that true systems
are often nonlinear and nondeterministic, since they are affected by “noise”.
This generated important new efforts in this field.

The contributions of the U.S. scientist R. Bellman in the context of dynamic
programming, R. Kalman in filtering techniques and the algebraic approach
to linear systems and the Russian L. Pontryagin with the maximum principle
for nonlinear optimal control problems established the foundations of modern
Control Theory.

We shall describe in Section 6 the approach by Kalman to the controllability
of linear finite dimensional systems. Furthermore, at the end of this paper we
give two short Appendices where we have tried to present, as simply as possible,
the central ideas of Bellman’s and Pontryagin’s works.

As we have explained, the developments of Industry and Technology had a
tremendous impact in the history of Control Engineering. But the development
of Mathematics had a similar effect.

Indeed, we hav already mentioned that, in the late thirties, two emerging
strategies were already established. The first one was based on the use
of differential equations and, therefore, the contributions made by the most
celebrated mathematicians between the XVIIth and the XIXth Centuries played
a fundamental role in that approach. The second one, based on a frequential
approach, was greatly influenced by the works of J. Fourier.

Accordingly, Control Theory may be regarded nowadays from two different
and complementary points of view: as a theoretical support to Control
Engineering (a part of System Engineering) and also as a mathematical
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discipline. In practice, the frontiers between these two subworlds are extremely
vague. In fact, Control Theory is one of the most interdisciplinary areas of
Science nowadays, where Engineering and Mathematics melt perfectly and
enrich each other.

Mathematics is currently playing an increasing role in Control Theory.
Indeed, the degree of sophistication of the systems that Control Theory has to
deal with increases permanently and this produces also an increasing demand
of Mathematics in the field.

Along these notes, it will become clear that Control Theory and Calculus of
Variations have also common roots. In fact, these two disciplines are very often
hard to distinguish.

The history of the Calculus of Variations is also full of mathematical
achievements. We shall now mention some of them.

As we said above, one can consider that the starting point of the Calculus
of Variations is the understanding that the straight line is the shortest path
between two given points. In the first Century, Heron of Alexandria showed in
his work “La Catoptrique” that the law of reflection of light (the fact that the
incidence and reflection angles are identical) may be obtained as a consequence
of the variational principle that light minimizes distance along the preferred
path.

In the XVII Century, P. De Fermat generalized this remark by Heron and
formulated the following minimum principle:

Light in a medium with variable velocity prefers the path that
guarantees the minimal time.

Later Leibnitz and Huygens proved that the law of refraction of light may
be obtained as a consequence of Fermat’s principle. Although this had been
discovered by G. Snell in 1621, it remained unpublished until 1703, as Huygens
published his Dioptrica.

In 1691, J. Bernoulli proved that the catenary is the curve which provides the
shape of a string of a given length and constant density with fixed ends under
the action of gravity. Let us also mention that the problem of the bachistocrone,
formulated by Bernoulli in 1696, is equivalent to finding the rays of light in the
upper half-plane y ≥ 0 corresponding to a light velocity c given by the formula
c(x, y) =

√
y (Newton proved in 1697 that the solution is the cycloid). The

reader interested in these questions may consult the paper by H. Sussmann [48].
R. Kalman, one of the greatest protagonists of modern Control Theory, said

in 1974 that, in the future, the main advances in Control and Optimization
of systems would come more from mathematical progress than from the
technological development. Today, the state of the art and the possibilities that
Technology offers are so impressive that maintaining that statement is probably
very risky. But, without any doubt, the development of Control Theory will
require deep contributions coming from both fields.

In view of the rich history of Control Theory and all the mathematical
achievements that have been undertaken in its domain of influence, one could
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Figure 9: Snell’s law of refraction.

ask whether the field has reached its end. But this is far from reality. Our
society provides every day new problems to Control Theory and this fact is
stimulating the creation of new Mathematics.

Figure 10: The biped
BIP2000.

Indeed, the range of applications of Control
Theory goes from the simplest mechanisms
we manipulate in everyday life to the most
sophisticated ones, emerging in new technologies.

The book edited by W.S. Levine [26] provides
a rather complete description of this variety of
applications.

One of the simplest applications of Control
Theory appears in such an apparently simple
machine as the tank of our bathroom. There
are many variants of tanks and some of the
licences go back to 1886 and can be found
in [25]. But all them work under the same
basic principles: the tank is supplied of regulating
valves, security mechanisms that start the control
process, feedback mechanisms that provide more
or less water to the tank depending of the level of
water in its interior and, finally, mechanisms that
avoid the unpleasant flooding in case that some
of the other components fail.

The systems of heating, ventilation and air
conditioning in big buildings are also very efficient

large scale control systems composed of interconnected thermo-fluid and electro-
mechanical subsystems. The main goal of these systems is to keep a comfortable
and good quality air under any circumstance, with a low operational cost and
a high degree of reliability. The relevance of a proper and efficient functioning
of these systems is crucial from the viewpoint of the impact in Economical and
Environmental Sciences. The predecessor of these sophisticated systems is the
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classical thermostat that we all know and regulates temperature at home.
The list of applications of Control Theory in Industry is endless. We can

mention, for instance, the pH control in chemical reactions, the paper and
automobile industries, nuclear security, defense, etc.

The control of chaos is also being considered by many researchers nowadays.
The chaotic behavior of a system may be an obstacle for its control; but it
may also be of help. For instance, the control along unstable trajectories is of
great use in controlling the dynamics of fight aircrafts. We refer to [35] for a
description of the state of the art of active control in this area.

Figure 11: Another view of the
biped BIP2000.

Space structures, optical reflectors of
large dimensions, satellite communication
systems, etc. are also examples of modern
and complex control systems. The control
of robots, ranging from the most simple
engines to the bipeds that simulate the
locomotive ability of humans is also
another emerging area of Control Theory.

For instance, see the web page
http://www.inrialpes.fr/bipop/ of
the French Institute I.N.R.I.A. (Institut
National de Recherche en Informatique et
Automatique), where illustrating images
and movies of the antropomorphic biped
BIP2000 can be found.

Compact disk players is another area
of application of modern control systems.
A CD player is endowed with an optical
mechanism allowing to interpret the
registered code and produce an acoustic
signal. The main goal when designing
CD players is to reach higher velocities
of rotation, permitting a faster reading,
without affecting the stability of the disk.
The control mechanisms have to be even more robust when dealing with portable
equipments.

Electrical plants and distribution networks are other modern applications of
Control Theory that influence significantly our daily life. There are also many
relevant applications in Medicine ranging from artificial organs to mechanisms
for insulin supply, for instance.

We could keep quoting other relevant applications. But those we have
mentioned and some others that will appear later suffice to prove the ubiquity
of control mechanisms in the real world. The underlying mathematical theory
is also impressive. The reader interested in an introduction to the classical and
basic mathematical techniques in Control Engineering is referred to [8] and [36].
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5. Controllability versus optimization

As already mentioned, for systems of the form (1), the main goal of Control
Theory is to find controls v leading the associated states y(v), i.e. the solutions
of the corresponding controlled systems, to a desired situation.

There are however (at least) two ways of specifying a “desired prescribed
situation”:

To fix a desired state yd and require

y(v) = yd (21)

or, at least,
y(v) ∼ yd (22)

in some sense. This is the controllability viewpoint.

The main question is then the existence of an admissible control v so that
the corresponding state y(v) satisfies (21) or (22). Once the existence
of such a control v is established, it is meaningful to look for an optimal
control, for instance, a control of minimal size. Other important questions
arise in this context too. For instance, the existence of “bang-bang”
controls, the minimal time of control, etc.

As we shall see, this problem may be difficult (or even very difficult) to
solve. In recent years, an important body of beautiful Mathematics has
been developed in connection with these questions.

To fix a cost function J = J(v) like for instance (3) or (4) and to look for
a minimizer u of J . This is the optimization or optimal control viewpoint.

As in (3) and (4), J is typically related to the “distance” to a prescribed
state. Both approaches have the same ultimate goal, to bring the state
close to the desired target but, in some sense, the second one is more
realistic and easier to implement.

The optimization viewpoint is, at least apparently, humble in comparison
with the controllability approach. But it is many times much more realistic.
In practice, it provides satisfactory results in many situations and, at the same
time, it requires simpler mathematical tools.

To illustrate this, we will discuss now a very simple example. It is trivial in
the context of Linear Algebra but it is of great help to introduce some of the
basic tools of Control Theory.

We will assume that the state equation is

Ay = b, (23)

where A is a n × n real matrix and the state is a column vector y =
(y1, y2, . . . , yn)t ∈ Rn. To simplify the situation, let us assume that A is
nonsingular. The control vector is b ∈ Rn. Obviously, we can rewrite (23)
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in the form y = A−1b, but we do not want to do this. In fact, we are mainly
interested in those cases in which (23) can be difficult to solve.

Let us first adopt the controllability viewpoint. To be specific, let us impose
as an objective to make the first component y1 of y coincide with a prescribed
value y∗1 :

y1 = y∗1 . (24)

This is the sense we are giving to (22) in this particular case. So, we are consider
the following controllability problem:

PROBLEM 0: To find b ∈ Rn such that the solution of (23) satisfies
(24).

Roughly speaking, we are addressing here a partial controllability problem,
in the sense that we are controlling only one component, y1 , of the state.

Obviously, such controls b exist. For instance, it suffices to take y∗ =
(y∗1 , 0, · · · , 0)t and then choose b = Ay∗. But this argument, by means of
which we find the state directly without previously determining the control, is
frequently impossible to implement in practice. Indeed, in most real problems,
we have first to find the control and, only then, we can compute the state by
solving the state equation.

The number of control parameters (the n components of b) is greater or equal
than the number of state components we have to control. But, what happens
if we stress our own possibilities ? What happens if, for instance, b1, . . . , bn−1

are fixed and we only have at our disposal bn to control the system ?
From a mathematical viewpoint, the question can be formulated as follows.

In this case,
Ay = c + be (25)

where c ∈ Rn is a prescribed column vector, e is the unit vector (0, . . . , 0, 1)t

and b is a scalar control parameter. The corresponding controllability problem
is now the following:

PROBLEM 1: To find b ∈ R such that the solution of (25) satisfies
(24).

This is a less obvious question. However, it is not too difficult to solve. Note
that the solution y to (25) can be decomposed in the following way:

y = x + z, (26)

where
x = A−1c (27)

and z satisfies
Az = be, i.e. z = bz∗ z∗ = A−1e. (28)

To guarantee that y1 can take any value in R, as we have required in (24),
it is necessary and sufficient to have z∗1 6= 0, z∗1 being the first component of
z∗ = A−1e.

In this way, we have a precise answer to this second controllability problem:
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The problem above can be solved for any y∗1 if and only if the first
component of A−1e does not vanish.

Notice that, when the first component of A−1e vanishes, whatever the control
b is, we always have y1 = x1 , x1 being the first component of the fixed vector x
in (27). In other words, y1 is not sensitive to the control bn . In this degenerate
case, the set of values taken by y1 is a singleton, a 0-dimensional manifold. Thus,
we see that the state is confined in a “space” of low dimension and controllability
is lost in general.

But, is it really frequent in practice to meet degenerate situations like the
previous one, where some components of the system are insensitive to the
control ?

Roughly speaking, it can be said that systems are generically not degenerate.
In other words, in examples like the one above, it is actually rare that z∗1
vanishes.

There are however a few remarks to do. When z∗1 does not vanish but is very
small, even though controllability holds, the control process is very unstable in
the sense that one needs very large controls in order to get very small variations
of the state. In practice, this is very important and must be taken into account
(one needs the system not only to be controllable but this to happen with
realistic and feasible controls).

On the other hand, it can be easily imagined that, when systems under
consideration are complex, i.e. many parameters are involved, it is difficult
to know a priori whether or not there are components of the state that are
insensitive to the control1.

Let us now turn to the optimization approach. Let us see that the difficulties
we have encountered related to the possible degeneracy of the system disappear
(which confirms the fact that this strategy leads to easier questions).

For example, let us assume that k > 0 is a reasonable bound of the control
b that we can apply. Let us put

J(bn) =
1
2
|y1 − y∗1 |2 ∀bn ∈ R, (29)

where y1 is the first component of the solution to (25). Then, it is reasonable to
admit that the best response is given by the solution to the following problem:

PROBLEM 1′: To find bk
n ∈ [−k, k] such that

J(bk
n) ≤ J(bn) ∀bn ∈ [−k, k]. (30)

Since bn 7→ J(bn) is a continuous function, it is clear that this problem
possesses a solution bk

n ∈ Ik for each k > 0. This confirms that the considered
optimal control problem is simpler.

1In fact, it is a very interesting and non trivial task to design strategies guaranteeing that
we do not fall in a degenerate situation.
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On the other hand, this point of view is completely natural and agrees with
common sense. According to our intuition, most systems arising in real life
should possess an optimal strategy or configuration. At this respect L. Euler
said:

“Universe is the most perfect system, designed by the most wise
Creator. Nothing will happen without emerging, at some extent, a
maximum or minimum principle”.

Let us analyze more closely the similarities and differences arising in the two
previous formulations of the control problem.

Assume the controllability property holds, that is, PROBLEM 1 is solvable
for any y∗1 . Then, if the target y∗1 is given and k is sufficiently large, the
solution to PROBLEM 1′ coincides with the solution to PROBLEM 1.

On the other hand, when there is no possibility to attain y∗1 exactly, the
optimization viewpoint, i.e. PROBLEM 1′, furnishes the best response.

To investigate whether the controllability property is satisfied, it can be
appropriate to solve PROBLEM 1′ for each k > 0 and analyze the behavior
of the cost

Jk = min
bn∈[−k,k]

J(bn) (31)

as k grows to infinity. If Jk stabilizes near a positive constant as k grows,
we can suspect that y∗1 cannot be attained exactly, i.e. that PROBLEM 1
does not have a solution for this value of y∗1 .

In view of these considerations, it is natural to address the question
of whether it is actually necessary to solve controllability problems like
PROBLEM 1 or, by the contrary, whether solving a related optimal control
problem (like PROBLEM 1′) suffices.

There is not a generic and systematic answer to this question. It depends on
the level of precision we require to the control process and this depends heavily
on the particular application one has in mind. For instance, when thinking
of technologies used to stabilize buildings, or when controlling space vehicles,
etc., the efficiency of the control that is required demands much more than
simply choosing the best one with respect to a given criterion. In those cases, it
is relevant to know how close the control will drive the state to the prescribed
target. There are, consequently, a lot of examples for which simple optimization
arguments as those developed here are insufficient.

In order to choose the appropriate control we need first to develop a rigorous
modelling (in other words, we have to put equations to the real life system).
The choice of the control problem is then a second relevant step in modelling.

Let us now recall and discuss some mathematical techniques allowing to
handle the minimization problems arising in the optimization approach (in fact,
we shall see that these techniques are also relevant when the controllability point
of view is adopted).
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These problems are closely related to the Calculus of Variations. Here, we
do not intend to provide a survey of the techniques in this field but simply to
mention some of the most common ideas.

For clarity, we shall start discussing Mathematical Programming. In the
context of Optimization, Programming is not the art of writing computer codes.
It was originated by the attempt to optimize the planning of the various tasks
or activities in an organized system (a plant, a company, etc.). The goal is then
to find what is known as an optimal planning or optimal programme.

The simplest problem of assignment suffices to exhibit the need of a
mathematical theory to address these issues.

Assume that we have 70 workers in a plant. They have different
qualifications and we have to assign them 70 different tasks. The total number
of possible distributions is 70 ! , which is of the order of 10100. Obviously, in
order to be able to solve rapidly a problem like this, we need a mathematical
theory to provide a good strategy.

This is an example of assignment problem. Needless to say, problems of
this kind are not only of academic nature, since they appear in most human
activities.

In the context of Mathematical Programming, we first find linear
programming techniques. As their name indicates, these are concerned with
those optimization problems in which the involved functional is linear.

Linear Programming was essentially unknown before 1947, even though
Joseph Fourier had already observed in 1823 the relevance of the questions it
deals with. L.V. Kantorovich, in a monograph published in 1939, was the first
to indicate that a large class of different planning problems could be covered
with the same formulation. The method of simplex, that we will recall below,
was introduced in 1947 and its efficiency turned out to be so impressive that
very rapidly it became a common tool in Industry.

There has been a very intense research in these topics that goes beyond
Linear Programming and the method of simplex. We can mention for instance
nonlinear programming methods, inspired by the method of descent. This
was formally introduced by the French mathematician A.L. Cauchy in the
XIX Century. It relies on the idea of solving a nonlinear equation by searching
the critical points of the corresponding primitive function.

Let us now give more details on Linear Programming. At this point, we will
follow a presentation similar to the one by G. Strang in [47].

The problems that one can address by means of linear programming involve
the minimization of linear functions subject to linear constraints. Although
they seem extremely simple, they are ubiquitous and can be applied in a large
variety of areas such as the control of traffic, Game Theory, Economics, etc.
Furthermore, they involve in practice a huge quantity of unknowns, as in the
case of the optimal planning problems we have presented before.

The simplest problem in this field can be formulated in the following way:

Given a real matrix A of order M × N (with M ≤ N), and given
a column vector b of M components and a column vector c with N
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components, to minimize the linear function

〈c, x〉 = c1x1 + · · ·+ cNxN

under the restrictions

Ax = b, x ≥ 0.

Here and in the sequel, we use 〈· , ·〉 to denote the usual Euclidean scalar
products in RN and RM . The associated norm will be denoted by | · |.

Of course, the second restriction has to be understood in the following way:

xj ≥ 0, j = 1, . . . , N.

In general, the solution to this problem is given by a unique vector x with the
property that N −M components vanish. Accordingly, the problem consists in
finding out which are the N −M components that vanish and, then, computing
the values of the remaining M components.

The method of simplex leads to the correct answer after a finite number of
steps. The procedure is as follows:

• Step 1: We look for a vector x with N−M zero components and satisfying
Ax = b, in addition to the unilateral restriction x ≥ 0. Obviously, this
first choice of x will not provide the optimal answer in general.

• Step 2: We modify appropriately this first choice of x allowing one of
the zero components to become positive and vanishing one of the positive
components and this in such a way that the restrictions Ax = b and x ≥ 0
are kept.

After a finite number of steps like Step 2, the value of 〈c, x〉 will have been
tested at all possible minimal points. Obviously, the solution to the problem is
obtained by choosing, among these points x, that one at which the minimum
of 〈c, x〉 is attained.

Let us analyze the geometric meaning of the simplex method with an
example.

Let us consider the problem of minimizing the function

10x1 + 4x2 + 7x3

under the constraints

2x1 + x2 + x3 = 1, x1 , x2 , x3 ≥ 0.

In this case, the set of admissible triplets (x1 , x2 , x3), i.e. those satisfying
the constraints is the triangle in R3 of vertices (0, 0, 1), (0, 1, 0) and (1/2, 0, 0)
(a face of a tetrahedron). It is easy to see that the minimum is achieved at
(0, 1, 0), where the value is 4.
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Let us try to give a geometrical explanation to this fact. Since x1 , x2 , x3 ≥ 0
for any admissible triplet, the minimum of the function 10x1 + 4x2 + 7x3 has
necessarily to be nonnegative. Moreover, the minimum cannot be zero since the
hyperplane

10x1 + 4x2 + 7x3 = 0

has an empty intersection with the triangle of admissible states. When
increasing the cost 10x1 + 4x2 + 7x3 , i.e. when considering level sets of the
form 10x1 + 4x2 + 7x3 = c with increasing c > 0, we are considering planes
parallel to 10x1 + 4x2 + 7x3 = 0 that are getting away from the origin and
closer to the triangle of admissible states. The first value of c for which the
level set intersects the admissible triangle provides the minimum of the cost
function and the point of contact is the minimizer.

It is immediate that this point is the vertex (0, 1, 0).
These geometrical considerations indicate the relevance of the convexity of

the set where the minimum is being searched. Recall that, in a linear space E,
a set K is convex if it satisfies the following property:

x, y ∈ K, λ ∈ [0, 1] ⇒ λx + (1− λ)y ∈ K.

The crucial role played by convexity will be also observed below, when
considering more sophisticated problems.

The method of simplex, despite its simplicity, is very efficient. There are
many variants, adapted to deal with particular problems. In some of them, when
looking for the minimum, one runs across the convex set and not only along
its boundary. For instance, this is the case of Karmakar’s method, see [47].
For more information on Linear Programming, the method of simplex and its
variants, see for instance [40].

As the reader can easily figure out, many problems of interest in
Mathematical Programming concern the minimization of nonlinear functions.
At this respect, let us recall the following fundamental result whose proof is the
basis of the so called Direct Method of the Calculus of Variations (DMCV):

Theorem 1 If H is a Hilbert space with norm ‖·‖H and the function J : H 7→ R
is continuous, convex and coercive in H, i.e. it satisfies

J(v) → +∞ as ‖v‖H → +∞, (32)

then J attains its minimum at some point u ∈ H. If, moreover, J is strictly
convex, this point is unique.

If, in the previous result, J is a C1 function, any minimizer u necessarily
satisfies

J ′(u) = 0, u ∈ H. (33)

Usually, (33) is known as the Euler equation of the minimization problem

Minimize J(v) subject to v ∈ H. (34)
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Consequently, if J is C1, Theorem 1 serves to prove that the (generally
nonlinear) Euler equation (33) possesses at least one solution.

Many systems arising in Continuum Mechanics can be viewed as the Euler
equation of a minimization problem. Conversely, one can associate Euler
equations to many minimization problems. This mutual relation can be used in
both directions: either to solve differential equations by means of minimization
techniques, or to solve minimization problems through the corresponding Euler
equations.

In particular, this allows proving existence results of equilibrium
configurations for many problems in Continuum Mechanics.

Furthermore, combining these ideas with the approximation of the space H
where the minimization problem is formulated by means of finite dimensional
spaces and increasing the dimension to cover in the limit the whole space H, one
obtains Galerkin’s approximation method. Suitable choices of the approximating
subspaces lead to the finite element methods.

In order to illustrate these statements and connect them to Control Theory,
let us consider the example

{
ẋ = Ax + Bv, t ∈ [0, T ],
x(0) = x0,

(35)

in which the state x = (x1(t), . . . , xN (t))t is a vector in RN depending on t
(the time variable) and the control v = (v1(t), . . . , vM (t))t is a vector with M
components that also depends on time.

In (35), we will assume that A is a square, constant coefficient matrix of
dimension N ×N , so that the underlying system is autonomous, i.e. invariant
with respect to translations in time. The matrix B has also constant coefficients
and dimension N ×M .

Let us set

J(v) =
1
2
|x(T )− x1|2 +

µ

2

∫ T

0

|v(t)|2 dt ∀v ∈ L2(0, T ;RM ), (36)

where x1 ∈ RN is given, x(T ) is the final value of the solution of (35) and µ > 0.
It is not hard to prove that J : L2(0, T ;RM ) 7→ R is well defined, continuous,

coercive and strictly convex. Consequently, J has a unique minimizer in
L2(0, T ;RM ). This shows that the control problem (35)–(36) has a unique
solution.

With the DMCV, the existence of minimizers for a large class of problems
can be proved. But there are many other interesting problems that do not enter
in this simple framework, for which minimizers do not exist.

Indeed, let us consider the simplest and most classical problem in the
Calculus of Variations: to show that the shortest path between two given points
is the straight line segment.

Of course, it is very easy to show this by means of geometric arguments.
However,
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What happens if we try to use the DMCV ?

The question is now to minimize the functional

∫ 1

0

|ẋ(t)| dt

in the class of curves x : [0, 1] 7→ R2 such that x(0) = P and x(1) = Q, where
P and Q are two given points in the plane.

The natural functional space for this problem is not a Hilbert space. It can
be the Sobolev space W 1,1(0, 1) constituted by all functions x = x(t) such that x
and its time derivative ẋ belong to L1(0, 1). It can also be the more sophisticated
space BV (0, 1) of functions of bounded variation. But these are not Hilbert
spaces and solving the problem in any of them, preferably in BV (0, 1), becomes
much more subtle.

We have described the DMCV in the context of problems without
constraints. Indeed, up to now, the functional has been minimized in the
whole space. But in most realistic situations the nature of the problem imposes
restrictions on the control and/or the state. This is the case for instance for the
linear programming problems we have considered above.

As we mentioned above, convexity plays a key role in this context too:

Theorem 2 Let H be a Hilbert space, K ⊂ H a closed convex set and
J : K 7→ R a convex continuous function. Let us also assume that either
K is bounded or J is coercive in K, i.e.

J(v) → +∞ asv ∈ K, ‖v‖H → +∞.

Then, there exists a point u ∈ K where J reaches its minimum over K.
Furthermore, if J is strictly convex, the minimizer is unique.

In order to illustrate this result, let us consider again the system (35) and
the functional

J(v) =
1
2
|x(T )− x1|2 +

µ

2

∫ T

0

|v(t)|2 dt ∀v ∈ K, (37)

where µ ≥ 0 and K ⊂ L2(0, T ;RM ) is a closed convex set. In view of Theorem 2,
we see that, if µ > 0, the optimal control problem determined by (35) and (37)
has a unique solution. If µ = 0 and K is bounded, this problem possesses at
least one solution.

Let us discuss more deeply the application of these techniques to the analysis
of the control properties of the linear finite dimensional system (35).

Let J : H 7→ R be, for instance, a functional of class C1. Recall again that,
at each point u where J reaches its minimum, one has

J ′(u) = 0, u ∈ H. (38)



28 E. Fernández-Cara and E. Zuazua

It is also true that, when J is convex and C1, if u solves (38) then u is a global
minimizer of J in H. Equation (38) is the Euler equation of the corresponding
minimization problem.

More generally, in a convex minimization problem, if the function to be
minimized is of class C1, an Euler inequality is satisfied by each minimizer.
Thus, u is a minimizer of the convex functional J in the convex set K of the
Hilbert space H if and only if

(J ′(u), v − u)H ≥ 0 ∀v ∈ K, u ∈ K. (39)

Here, (· , ·)H stands for the scalar product in H.
In the context of Optimal Control, this characterization of u can be used

to deduce the corresponding optimality conditions, also called the optimality
system.

For instance, this can be made in the case of problem (35),(37). Indeed, it
is easy to see that in this case (39) reduces to





µ

∫ T

0

〈u(t), v(t)− u(t)〉 dt + 〈x(T )− x1, zv(T )− zu(T )〉 ≥ 0

∀v ∈ K, u ∈ K,

(40)

where, for each v ∈ L2(0, T ;RM ), zv = zv(t) is the solution of
{

żv = Azv + Bv, t ∈ [0, T ],
zv(0) = 0

(recall that 〈· , ·〉 stands for the Euclidean scalar products in RM and RN ).
Now, let p = p(t) be the solution of the backward in time differential problem

{ −ṗ = Atp, t ∈ [0, T ],
p(T ) = x(T )− x1.

(41)

Then

〈x(T )−x1, zv(T )−zu(T )〉 = 〈p(T ), zv(T )−zu(T )〉 =
∫ T

0

〈p(t), B(v(t)−u(t))〉 dt

and (40) can also be written in the form:




∫ T

0

〈µu(t) + Btp(t), v(t)− u(t)〉 dt ≥ 0

∀v ∈ K, u ∈ K.

(42)

The system constituted by the state equation (35) for v = u, i.e.
{

ẋ = Ax + Bu, t ∈ [0, T ],
x(0) = x0,

(43)
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the adjoint state equation (41) and the inequalities (42) is referred to as the
optimality system. This system provides, in the case under consideration, a
characterization of the optimal control.

The function p = p(t) is the adjoint state. As we have seen, the introduction
of p leads to a rewriting of (40) that is more explicit and easier to handle.

Very often, when addressing optimization problems, we have to deal with
restrictions or constraints on the controls and/or state. Lagrange multipliers
then play a fundamental role and are needed in order to write the equations
satisfied by the minimizers: the so called Euler-Lagrange equations.

To do that, we must introduce the associated Lagrangian and, then, we
must analyze its saddle points. The determination of saddle points leads to two
equivalent extremal problems of dual nature.

This is a surprising fact in this theory that can be often used with efficiency:
the original minimization problem being difficult to solve, one may often write
a dual minimization problem (passing through the Lagrangian); it may well
happen to the second problem to be simpler than the original one.

Saddle points arise naturally in many optimization problems. But they can
also be viewed as the solutions of minimax problems. Minimax problems arise
in many contexts, for instance:

• In Differential Game Theory, where two or more players compete trying
to maximize their profit and minimize the one of the others.

• In the characterization of the proper vibrations of elastic bodies. Indeed,
very often these can be characterized as eigenvalues of a self-adjoint
compact operator in a Hilbert space through a minimax principle related
to the Rayleigh quotient.

One of the most relevant contributions in this field was the one by
J. Von Neumann in the middle of the XX Century, proving that the existence
of a minimax is guaranteed under very weak conditions.

In the last three decades, these results have been used systematically for
solving nonlinear differential problems, in particular with the help of the
Mountain Pass Lemma (for instance, see [20]). At this respect, it is worth
mentioning that a mountain pass is indeed a beautiful example of saddle point
provided by Nature. A mountain pass is the location one chooses to cross
a mountain chain: this point must be of minimal height along the mountain
chain but, on the contrary, it is of maximal height along the crossing path we
follow.

The reader interested in learning more about Convex Analysis and the
related duality theory is referred to the books [9] and [41], by I. Ekeland
and R. Temam and R.T. Rockafellar, respectively. The lecture notes by
B. Larrouturou and P.L. Lions [23] contain interesting introductions to these
and other related topics, like mathematical modelling, the theory of partial
differential equations and numerical approximation techniques.
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6. Controllability of linear finite dimensional systems

We will now be concerned with the controllability of ordinary differential
equations. We will start by considering linear systems.

As we said above, Control Theory is full of interesting mathematical
results that have had a tremendous impact in the world of applications (most
of them are too complex to be reproduced in these notes). One of these
important results, simple at the same time, is a theorem by R.E. Kalman which
characterizes the linear systems that are controllable.

Figure 12: Rudolph
E. Kalman (1930).

Let us consider again the linear system
{

ẋ = Ax + Bv, t > 0,
x(0) = x0,

(44)

with state x = (x1(t), . . . , xN (t))t and control v =
(v1(t), . . . , vM (t))t. The matrices A and B have
constant coefficients and dimensions N × N and
N ×M , respectively.

Assume that N ≥ M ≥ 1. In practice, the
cases where M is much smaller than N are especially
significant. Of course, the most interesting case is
that in which M = 1 and, simultaneously, N is very
large. We then dispose of a single scalar control to
govern the behavior of a very large number N of
components of the state.

System (44) is said to be controllable at time
T > 0 if, for every initial state x0 ∈ RN and every final state x1 ∈ RN , there
exists at least one control u ∈ C0([0, T ];RM ) such that the associated solution
satisfies

x(T ) = x1. (45)

The following result, due to Kalman, characterizes the controllability of (44)
(see for instance [25]):

Theorem 3 A necessary and sufficient condition for system (44) to be
controllable at some time T > 0 is that

rank
[
B |AB | · · · |AN−1B

]
= N. (46)

Moreover, if this is satisfied, the system is controllable for all T > 0.
When the rank of this matrix is k, with 1 ≤ k ≤ N − 1, the system is not

controllable and, for each x0 ∈ RN and each T > 0, the set of solutions of (44)
at time T > 0 covers an affine subspace of RN of dimension k.

The following remarks are now in order:
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• The degree of controllability of a system like (44) is completely determined
by the rank of the corresponding matrix in (46). This rank indicates how
many components of the system are sensitive to the action of the control.

• The matrix in (46) is of dimension (N ×M) ×N so that, when we only
have one control at our disposal (i.e. M = 1), this is a N ×N matrix. It
is obviously in this case when it is harder to the rank of this matrix to be
N . This is in agreement with common sense, since the system should be
easier to control when the number of controllers is larger.

• The system is controllable at some time if and only if it is controllable at
any positive time. In some sense, this means that, in (44), information
propagates at infinite speed. Of course, this property is not true in general
in the context of partial differential equations.

As we mentioned above, the concept of adjoint system plays an important
role in Control Theory. In the present context, the adjoint system of (44) is the
following: { −ϕ̇ = Atϕ, t < T,

ϕ(T ) = ϕ0.
(47)

Let us emphasize the fact that (47) is a backward (in time) system. Indeed,
in (47) the sense of time has been reversed and the differential system has been
completed with a final condition at time t = T .

The following result holds:

Theorem 4 The rank of the matrix in (46) is N if and only if, for every T > 0,
there exists a constant C(T ) > 0 such that

|ϕ0|2 ≤ C(T )
∫ T

0

|Btϕ|2 dt (48)

for every solution of (47).

The inequality (48) is called an observability inequality. It can be viewed as
the dual version of the controllability property of system (44).

This inequality guarantees that the adjoint system can be “observed”
through Btϕ, which provides M linear combinations of the adjoint state. When
(48) is satisfied, we can affirm that, from the controllability viewpoint, Bt

captures appropriately all the components of the adjoint state ϕ. This turns
out to be equivalent to the controllability of (44) since, in this case, the control
u acts efficiently through the matrix B on all the components of the state x.

Inequalities of this kind play also a central role in inverse problems, where
the goal is to reconstruct the properties of an unknown (or only partially
known) medium or system by means of partial measurements. The observability
inequality guarantees that the measurements Btϕ are sufficient to detect all the
components of the system.



32 E. Fernández-Cara and E. Zuazua

The proof of Theorem 4 is quite simple. Actually, it suffices to write the
solutions of (44) and (47) using the variation of constants formula and, then, to
apply the Cayley-Hamilton theorem, that guarantees that any matrix is a root
of its own characteristic polynomial.

Thus, to prove that (46) implies (48), it is sufficient to show that, when (46)
is true, the mapping

ϕ0 7→
(∫ T

0

|Btϕ|2 dt

)1/2

is a norm in RN . To do that, it suffices to check that the following uniqueness
or unique continuation result holds:

If Btϕ = 0 for 0 ≤ t ≤ T then, necessarily, ϕ ≡ 0.

It is in the proof of this result that the rank condition is needed.
Let us now see how, using (48), we can build controls such that the

associated solutions to (44) satisfy (45). This will provide another idea of how
controllability and optimal control problems are related.

Given initial and final states x0 and x1 and a control time T > 0, let us
consider the quadratic functional I, with

I(ϕ0) =
1
2

∫ T

0

|Btϕ|2 dt− 〈x1, ϕ0〉+ 〈x0, ϕ(0)〉 ∀ϕ0 ∈ RN , (49)

where ϕ is the solution of the adjoint system (47) associated to the final state
ϕ0.

The function ϕ0 7→ I(ϕ0) is strictly convex and continuous in RN . In view
of (48), it is also coercive, that is,

lim
|ϕ0|→∞

I(ϕ0) = +∞. (50)

Therefore, I has a unique minimizer in RN , that we shall denote by ϕ̂0. Let us
write the Euler equation associated to the minimization of the functional (49):

∫ T

0

〈Btϕ̂, Btϕ〉 dt− 〈x1, ϕ0〉+ 〈x0, ϕ(0)〉 = 0 ∀ϕ0 ∈ RN , ϕ̂0 ∈ RN . (51)

Here, ϕ̂ is the solution of the adjoint system (47) associated to the final state
ϕ̂0.

From (51), we deduce that û = Btϕ̂ is a control for (44) that guarantees
that (45) is satisfied. Indeed, if we denote by x̂ the solution of (44) associated
to û, we have that

∫ T

0

〈Btϕ̂, Btϕ〉 dt = 〈x̂(T ), ϕ0〉 − 〈x0, ϕ(0)〉 ∀ϕ0 ∈ RN . (52)

Comparing (51) and (52), we see that the previous assertion is true.
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It is interesting to observe that, from the rank condition, we can deduce
several variants of the observability inequality (48). In particular,

|ϕ0| ≤ C(T )
∫ T

0

|Btϕ| dt (53)

This allows us to build controllers of different kinds.
Indeed, consider for instance the functional Jbb , given by

Jbb(ϕ0) =
1
2

(∫ T

0

|Btϕ| dt

)2

− 〈x1, ϕ0〉+ 〈x0, ϕ(0)〉 ∀ϕ0 ∈ RN . (54)

This is again strictly convex, continuous and coercive. Thus, it possesses exactly
one minimizer ϕ̂0

bb . Let us denote by ϕ̂bb the solution of the corresponding
adjoint system. Arguing as above, it can be seen that the new control ûbb , with

ûbb =

(∫ T

0

|Btϕ̂bb| dt

)
sgn(Btϕ̂bb), (55)

makes the solution of (44) satisfy (45). This time, we have built a bang-bang
control, whose components can only take two values:

±
∫ T

0

|Btϕ̂bb| dt.

The control û that we have obtained minimizing J is the one of minimal
norm in L2(0, T ;RM ) among all controls guaranteeing (45). On the other hand,
ûbb is the control of minimal L∞ norm. The first one is smooth and the second
one is piecewise constant and, therefore, discontinuous in general. However, the
bang-bang control is easier to compute and apply since, as we saw explicitly
in the case of the pendulum, we only need to determine its amplitude and the
location of the switching points. Both controls û and ûbb are optimal with
respect to some optimality criterium.

We have seen that, in the context of linear control systems, when
controllability holds, the control may be computed by solving a minimization
problem. This is also relevant from a computational viewpoint since it provides
useful ideas to design efficient approximation methods.

7. Controllability of nonlinear finite dimensional systems

Let us now discuss the controllability of some nonlinear control systems.
This is a very complex topic and it would be impossible to describe in a few
pages all the significant results in this field. We will just recall some basic ideas.

When the goal is to produce small variations or deformations of the state,
it might be sufficient to proceed using linearization arguments. More precisely,
let us consider the system

{
ẋ = f(x, u), t > 0,
x(0) = x0,

(56)
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where f : RN ×RM 7→ RN is smooth and f(0, 0) = 0. The linearized system at
u = 0, x = 0 is the following:





ẋ =
∂f

∂x
(0, 0)x +

∂f

∂u
(0, 0)u, t > 0,

x(0) = 0.

(57)

Obviously, (57) is of the form (44), with

A =
∂f

∂x
(0, 0), B =

∂f

∂u
(0, 0), x0 = 0. (58)

Therefore, the rank condition

rank [B|AB| · · · |AN−1B] = N (59)

is the one that guarantees the controllability of (57).
Based on the inverse function theorem, it is not difficult to see that, if

condition (59) is satisfied, then (56) is locally controllable in the following sense:

For every T > 0, there exists a neighborhood BT of the origin in
RN such that, for any initial and final states x0, x1 ∈ BT , there
exist controls u such that the associated solutions of the system (56)
satisfy

x(T ) = x1 . (60)

However, this analysis is not sufficient to obtain results of global nature.
A natural condition that can be imposed on the system (56) in order to

guarantee global controllability is that, at each point x0 ∈ RN , by choosing all
admissible controls u ∈ Uad , we can recover deformations of the state in all the
directions of RN . But,

Which are the directions in which the state x can be deformed
starting from x0 ?

Obviously, the state can be deformed in all directions f(x0, u) with u ∈ Uad .
But these are not all the directions of RN when M < N . On the other hand,
as we have seen in the linear case, there exist situations in which M < N and,
at the same time, controllability holds thanks to the rank condition (59).

In the nonlinear framework, the directions in which the state may be
deformed around x0 are actually those belonging to the Lie algebra generated
by the vector fields f(x0, u), when u varies in the set of admissible controls Uad .
Recall that the Lie algebra A generated by a family F of regular vector fields
is the set of Lie brackets [f, g] with f, g ∈ F , where

[f, g] = (∇g)f − (∇f)g

and all the fields that can be obtained iterating this process of computing Lie
brackets.

The following result can be proved (see [46]):
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Theorem 5 Assume that, for each x0, the Lie algebra generated by f(x0, u)
with u ∈ Uad coincides with RN . Then (56) is controllable, i.e. it can be driven
from any initial state to any final state in a sufficiently large time.

The following simple model of driving a car provides a good example to
apply these ideas.

Thus, let us consider a state with four components x = (x1 , x2 , x3 , x4) in
which the first two, x1 and x2 , provide the coordinates of the center of the axis
x2 = 0 of the vehicle, the third one, x3 = ϕ, is the counterclockwise angle of
the car with respect to the half axis x1 > 0 and the fourth one, x4 = θ, is the
angle of the front wheels with respect to the axis of the car. For simplicity, we
will assume that the distance from the front to the rear wheels is ` = 1.

The front wheels are then parallel to the vector (cos(θ + ϕ), sin(θ + ϕ)), so
that the instantaneous velocity of the center of the front axis is parallel to this
vector. Accordingly,

d

dt

(
x1

x2

)
= u2(t)

(
cos(θ + ϕ)
sin(θ + ϕ)

)

for some scalar function u2 = u2(t).
The center of the rear axis is the point (x1− cos ϕ, x2− sin ϕ). The velocity

of this point has to be parallel to the orientation of the rear wheels (cosϕ, sinϕ),
so that

(sinϕ)
d

dt
(x1 − cosϕ)− (cos ϕ)

d

dt
(x2 − sin ϕ) = 0.

In this way, we deduce that
ϕ̇ = u2 sin θ.

On the other hand, we set
θ̇ = u1

and this reflects the fact that the velocity at which the angle of the wheels varies
is the second variable that we can control. We obtain the following reversible
system:

ẋ = u1(t)




0
0
0
1


 + u2(t)




cos(ϕ + θ)
sin(ϕ + θ)

sin θ
0


 . (61)

According to the previous analysis, in order to guarantee the controllability
of (61), it is sufficient to check that the Lie algebra of the directions in which
the control may be deformed coincides with R4 at each point.

With (u1, u2) = (0, 1) and (u1, u2) = (1, 0), we obtain the directions



cos(ϕ + θ)
sin(ϕ + θ)

sin θ
0


 and




0
0
0
1


 , (62)
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respectively. The corresponding Lie bracket provides the direction



− sin(ϕ + θ)
cos(ϕ + θ)

cos θ
0


 , (63)

whose Lie bracket with the first one in (62) provides the new direction



− sin ϕ
cos ϕ

0
0


 . (64)

Taking into account that the determinant of the matrix formed by the four
column vectors in (62), (63) and (64) is identically equal to 1, we deduce that,
at each point, the set of directions in which the state may be deformed is the
whole R4.

Thus, system (61) is controllable.
It is an interesting exercise to think on how one uses in practice the four

vectors (62)− (64) to park a car. The reader interested in getting more deeply
into this subject may consult the book by E. Sontag [46].

The analysis of the controllability of systems governed by partial differential
equations has been the objective of a very intensive research the last decades.
However, the subject is older than that.

In 1978, D.L. Russell [42] made a rather complete survey of the most relevant
results that were available in the literature at that time. In that paper, the
author described a number of different tools that were developed to address
controllability problems, often inspired and related to other subjects concerning
partial differential equations: multipliers, moment problems, nonharmonic
Fourier series, etc. More recently, J.L. Lions introduced the so called Hilbert
Uniqueness Method (H.U.M.; for instance, see [29],[30]) and this was the starting
point of a fruitful period on the subject.

In this context, which is the usual for modelling problems from Continuum
Mechanics, one needs to deal with infinite dimensional dynamical systems and
this introduces a lot of nontrivial difficulties to the theory and raises many
relevant and mathematically interesting questions. Furthermore, the solvability
of the problem depends very much on the nature of the precise question under
consideration and, in particular, the following features may play a crucial role:
linearity or nonlinearity of the system, time reversibility, the structure of the
set of admissible controls, etc.

For more details, the reader is referred to the books [21] and [27] and the
survey papers [13], [54] and [55].

8. Control, complexity and numerical simulation

Real life systems are genuinely complex. Internet, the large quantity of
components entering in the fabrication of a car or the decoding of human genoma
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are good examples of this fact.
The algebraic system (23) considered in Section 5 is of course academic

but it suffices by itself to show that not all the components of the state are
always sensitive to the chosen control. One can easily imagine how dramatic
can the situation be when dealing with complex (industrial) systems. Indeed,
determining whether a given controller allows to act on all the components of
a system may be a very difficult task.

But complexity does not only arise for systems in Technology and Industry.
It is also present in Nature. At this respect, it is worth recalling the following
anecdote. In 1526, the Spanish King “Alfonso X El Sabio” got into the Alcázar
of Segovia after a violent storm and exclaimed:

“If God had consulted me when He was creating the world, I would
have recommended a simpler system.”

Recently we have learned about a great news, a historical achievement of
Science: the complete decoding of human genoma. The genoma code is a good
proof of the complexity which is intrinsic to life. And, however, one has not to
forget that, although the decoding has been achieved, there will still be a lot to
do before being able to use efficiently all this information for medical purposes.

Complexity is also closely related to numerical simulation. In practice,
any efficient control strategy, in order to be implemented, has to go through
numerical simulation. This requires discretizing the control system, which very
often increases its already high complexity.

The recent advances produced in Informatics allow nowadays to use
numerical simulation at any step of an industrial project: conception,
development and qualification. This relative success of numerical methods
in Engineering versus other traditional methods relies on the facts that the
associated experimental costs are considerably lower and, also, that numerical
simulation allows testing at the realistic scale, without the technical restrictions
motivated by instrumentation.

This new scientific method, based on a combination of Mathematics and
Informatics, is being seriously consolidated. Other Sciences are also closely
involved in this melting, since many mathematical models stem from them:
Mechanics, Physics, Chemistry, Biology, Economics, etc. Thus, we are now
able to solve more sophisticated problems than before and the complexity of
the systems we will be able to solve in the near future will keep increasing.
Thanks in particular to parallelization techniques, the description and numerical
simulation of complex systems in an acceptable time is more and more feasible.

However, this panorama leads to significant and challenging difficulties that
we are now going to discuss.

The first one is that, in practice, the systems under consideration are in
fact the coupling of several complex subsystems. Each of them has its own
dynamics but the coupling may produce new and unexpected phenomena due
to their interaction.

An example of this situation is found in the mathematical description of
reactive fluids which are used, for instance, for the propulsion of spatial vehicles.
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For these systems, one has to perform a modular analysis, separating and
simulating numerically each single element and, then, assembling the results.
But this is a major task and much has still to be done2.

There are many relevant examples of complex systems for which coupling can
be the origin of important difficulties. In the context of Aerospatial Technology,
besides the combustion of reactive fluids, we find fluid-structure interactions
which are extremely important when driving the craft, because of the vibrations
originated by combustion. Other significant examples are weather prediction
and Climatology, where the interactions of atmosphere, ocean, earth, etc. play
a crucial role. A more detailed description of the present situation of research
and perspectives at this respect can be found in the paper [1], by J. Achache
and A. Bensoussan.

In our context, the following must be taken into account:

Only complex systems are actually relevant from the viewpoint of
applications.

Furthermore, in order to solve a relevant problem, we must first identify
the various subsystems and the way they interact.

Let us now indicate some of the mathematical techniques that have been
recently developed (and to some extent re-visited) to deal with complexity and
perform the appropriate decomposition of large systems that we have mentioned
as a need:

• The solution of linear systems.

When the linear system we have to solve presents a block-sparse structure,
it is convenient to apply methods combining appropriately the local
solution of the subsystems corresponding to the individual blocks. This is
a frequent situation when dealing with finite difference or finite element
discretizations of a differential system.

The most usual way to proceed is to introduce preconditioners, determined
by the solutions to the subsystems, each of them being computed with
one processor and, then, to perform the global solution with parallelized
iterative methods.

• Multigrid methods.

These are very popular today. Assume we are considering a linear system
originated by the discretization of a differential equation. The main idea of
a multigrid method is to “separate” the low and the high frequencies of the
solution in the computation procedure. Thus we compute approximations
of the solution at different levels, for instance working alternately with a
coarse and a fine grid and incorporating adequate coupling mechanisms.

2To understand the level of difficulty, it is sufficient to consider a hybrid parabolic-
hyperbolic system and try to match the numerical methods obtained with a finite difference
method in the hyperbolic component and a finite element method in the parabolic one.
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The underlying reason is that any grid, even if it is very fine, is unable to
capture sufficiently high frequency oscillations, just as an ordinary watch
is unable to measure microseconds.

• Domain decomposition methods.

Now, assume that (1) is a boundary value problem for a partial differential
equation in the N -dimensional domain Ω. If Ω has a complex geometrical
structure, it is very natural to decompose (1) in several similar systems
written in simpler domains.

This can be achieved with domain decomposition techniques. The main
idea is to split Ω in the form

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωm , (65)

and to introduce then an iterative scheme based on computations on each
Ωi separately.

Actually, this is not new. Some seminal ideas can be found in Volume II
of the book [7] by R. Courant and D. Hilbert. Since then, there have
been lots of works on domain decomposition methods applied to partial
differential systems (see for instance [24]). However, the role of these
methods in the solution of control problems has not still been analyzed
completely.

• Alternating direction methods.

Frequently, we have to consider models involving time-dependent partial
differential equations in several space dimensions. After standard time
discretization, one is led at each time step to a set of (stationary) partial
differential problems whose solution, in many cases, is difficult to achieve.

This is again connected to the need of decomposing complex systems in
more simple subsystems. These ideas lead to the methods of alternating
directions, of great use in this context. A complete analysis can be found
in [51]. In the particular, but very illustrating context of the Navier-Stokes
equations, these methods have been described for instance in [19] and [38].

However, from the viewpoint of Control Theory, alternating direction
methods have not been, up to now, sufficiently explored.

The interaction of the various components of a complex system is also a
difficulty of major importance in control problems. As we mentioned above, for
real life control problems, we have first to choose an appropriate model and then
we have also to make a choice of the control property. But necessarily one ends
up introducing numerical discretization algorithms to make all this computable.
Essentially, we will have to be able to compute an accurate approximation of the
control and this will be made only if we solve numerically a discretized control
problem.

At this point, let us observe that, as mentioned in [53], some models obtained
after discretization (for instance via the finite element method) are not only
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relevant regarded as approximations of the underlying continuous models but
also by themselves, as genuine models of the real physical world3.

Let us consider a simple example in order to illustrate some extra, somehow
unexpected, difficulties that the discretization may bring to the control process.

Consider again the state equation (1). To fix ideas, we will assume that our
control problem is as follows

To find u ∈ Uad such that

Φ(u, y(u)) ≤ Φ(v, y(v)) ∀v ∈ Uad , (66)

where Φ = Φ(v, y) is a given function.

Then, we are led to the following crucial question:

What is an appropriate discretized control problem ?

There are at least two reasonable possible answers:

• First approximation method.

We first discretize Uad and (1) and obtain Uad,h and the new (discrete)
state equation

Ah(yh) = f(vh). (67)

Here, h stands for a small parameter that measures the characteristic
size of the “numerical mesh”. Later, we let h → 0 to make the discrete
problem converge to the continuous one. If Uad,h and (67) are introduced
the right way, we can expect to obtain a “discrete state” yh(vh) for each
“discrete admissible” control vh ∈ Uad,h .

Then, we search for an optimal control at the discrete level, i.e. a control
uh ∈ Uad,h such that

Φ(uh, yh(uh)) ≤ Φ(vh, yh(vh)) ∀vh ∈ Uad,h . (68)

This corresponds to the following scheme:

MODEL −→ DISCRETIZATION −→ CONTROL.

Indeed, starting from the continuous control problem, we first discretize it
and we then compute the control of the discretized model. This provides
a first natural method for solving in practice the control problem.

3The reader can find in [53] details on how the finite element method was born around
1960. In this article it is also explained that, since its origins, finite elements have been viewed
as a tool to build legitimate discrete models for the mechanical systems arising in Nature and
Engineering, as well as a method to approximate partial differential systems.



An Overview of Control Theory 41

• Second approximation method.

However, we can also do as follows. We analyze the original control
problem (1),(66) and we characterize the optimal solution and control
in terms of an optimality system. We have already seen that, in practice,
this is just to write the Euler or Euler-Lagrange equations associated to
the minimization problem we are dealing with. We have already described
how optimality systems can be found for some particular control problems.

The optimality systems are of the form

A(y) = f(u), B(y)p = g(u, y) (69)

(where B(y) is a linear operator), together with an additional equation
relating u, y and p. To simplify our exposition, let us assume that the
latter can be written in the form

Q(u, y, p) = 0 (70)

for some mapping Q. The key point is that, if u, y and p solve the
optimality system (69) − (70), then u is an optimal control and y is the
associate state. Of course, p is the adjoint state associated to u and y.

Then, we can discretize and solve numerically (69),(70). This corresponds
to a different approach:

MODEL −→ CONTROL −→ DISCRETIZATION.

Notice that, in this second approach, we have interchanged the control
and discretization steps. Now, we first analyze the continuous control
problem and, only later, we proceed to the numerical discretization.

It is not always true that these two methods provide the same results.
For example, it is shown in [18] that, with a finite element approximation,

the first one may give erroneous results in vibration problems. This is connected
to the lack of accuracy of finite elements in the computation of high frequency
solutions to the wave equation, see [53]4.

On the other hand, it has been observed that, for the solution of a lot of
optimal design problems, the first strategy is preferable; see for instance [34]
and [37].

The commutativity of the DISCRETIZATION/CONTROL scheme is at
present a subject that is not well understood and requires further investigation.
We do not still have a significant set of results allowing to determine when
these two approaches provide similar results and when they do not. Certainly,
the answer depends heavily on the nature of the model under consideration.

4Nevertheless, the disagreement of these two methods may be relevant not only as a purely
numerical phenomenon but also at the level of modelling since, as we said above, in many
engineering applications discrete models are often directly chosen.
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In this sense, control problems for elliptic and parabolic partial differential
equations, because of their intrinsic dissipative feature, will be better behaved
than hyperbolic systems. We refer the interested reader to [56] for a complete
account of this fact. It is however expected that much progress will be made in
this context in the near future.

9. Two challenging applications

In this Section, we will mention two control problems whose solution will
probably play an important role in the context of applications in the near future.

9.1. Molecular control via laser technology

We have already said that there are many technological contexts where
Control Theory plays a crucial role. One of them, which has had a very recent
development and announces very promising perspectives, is the laser control of
chemical reactions.

The basic principles used for the control of industrial processes in Chemistry
have traditionally been the same for many years. Essentially, the strategies have
been (a) to introduce changes in the temperature or pressure in the reactions
and (b) to use catalyzers.

Laser technology, developed in the last four decades, is now playing an
increasingly important role in molecular design. Indeed, the basic principles
in Quantum Mechanics rely on the wave nature of both light and matter.
Accordingly, it is reasonable to believe that the use of laser will be an efficient
mechanism for the control of chemical reactions.

The experimental results we have at our disposal at present allow us to
expect that this approach will reach high levels of precision in the near future.
However, there are still many important technical difficulties to overcome.

For instance, one of the greatest drawbacks is found when the molecules
are “not very isolated”. In this case, collisions make it difficult to define their
phases and, as a consequence, it is very hard to choose an appropriate choice
of the control. A second limitation, of a much more technological nature, is
related to the design of lasers with well defined phases, not too sensitive to the
instabilities of instruments.

For more details on the modelling and technological aspects, the reader is
referred to the expository paper [4] by P. Brumer and M. Shapiro.

The goal of this subsection is to provide a brief introduction to the
mathematical problems one finds when addressing the control of chemical
reactions.

Laser control is a subject of high interest where Mathematics are not
sufficiently developed. The models needed to describe these phenomena lead
to complex (nonlinear) Schrödinger equations for which the results we are able
to deduce are really poor at present. Thus,
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We do not dispose at this moment of a complete theory for the
corresponding initial or iniial/boundary value problems.

Standard numerical methods are not sufficiently efficient and, accordingly,
it is difficult to test the accuracy of the models that are by now available.

The control problems arising in this context are bilinear. This adds
fundamental difficulties from a mathematical viewpoint and makes these
problems extremely challenging. Indeed, we find here genuine nonlinear
problems for which, apparently, the existing linear theory is insufficient to
provide an answer in a first approach.

In fact, it suffices to analyze the most simple bilinear control problems where
wave phenomena appear to understand the complexity of this topic. Thus, let
us illustrate this situation with a model concerning the linear one-dimensional
Schrödinger equation. It is clear that this is insufficient by itself to describe all
the complex phenomena arising in molecular control via laser technology. But
it suffices to present the main mathematical problem and difficulties arising in
this context.

The system is the following:




iφt + φxx + p(t)xφ = 0 0 < x < 1, 0 < t < T,
φ(0, t) = φ(1, t) = 0, 0 < t < T,
φ(x, 0) = φ0(x), 0 < x < 1.

(71)

In (71), φ = φ(x, t) is the state and p = p(t) is the control. Although φ is
complex-valued, p(t) is real for all t. The control p can be interpreted as the
intensity of an applied electrical field and x is the (prescribed) direction of the
laser.

The state φ = φ(x, t) is the wave function of the molecular system. It
can be regarded as a function that furnishes information on the location of an
elementary particle: for arbitrary a and b with 0 ≤ a < b ≤ 1, the quantity

P (a, b; t) =
∫ b

a

|φ(x, t)|2 dx

can be viewed as the probability that the particle is located in (a, b) at time t.
The controllability problem for (71) is to find the set of attainable states

φ(·, T ) at a final time T as p runs over the whole space L2(0, T ).
It is worth mentioning that, contrarily to what happens to many other

control problems, the set of attainable states at time T depends strongly on
the initial data φ0. In particular, when φ0 = 0 the unique solution of (71) is
φ ≡ 0 whatever p is and, therefore, the unique attainable state is φ(·, T ) ≡ 0. It
is thus clear that, if we want to consider a nontrivial situation, we must suppose
that φ0 6= 0.

We say that this is a bilinear control problem, since the unique nonlinearity in
the model is the term p(t)xφ, which is essentially the product of the control and
the state. Although the nonlinearity might seem simple, this control problem
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becomes rather complex and out of the scope of the existing methods in the
literature.

For an overview on the present state of the art of the control of systems
governed by the Schrödinger equation, we refer to the survey article [57] and
the references therein.

9.2. An environmental control problem

For those who live and work on the seaside or next to a river, the relevance
of being able to predict drastic changes of weather or on the state of the sea is
obvious. In particular, it is vital to predict whether flooding may arise, in order
to be prepared in time.

Floodings are one of the most common environmental catastrophic events
and cause regularly important damages in several regions of our planet. They
are produced as the consequence of very complex interactions of tides, waves and
storms. The varying wind and the fluctuations of the atmospherical pressure
produced by a storm can be the origin of an elevation or descent of several
meters of the sea level in a time period that can change from several hours to
two or three days. The wind can cause waves of a period of 20 seconds and
a wavelenght of 20 or 30 meters. The simultaneous combination of these two
phenomena leads to a great risk of destruction and flooding.

The amplitude of the disaster depends frequently on the possible
accumulation of factors or events with high tides. Indeed, when this exceptional
elevation of water occurs during a high tide, the risk of flooding increases
dangerously.

This problem is being considered increasingly as a priority by the authorities
of many cities and countries. Indeed, the increase of temperature of the planet
and the melting of polar ice are making these issues more and more relevant for
an increasing population in all the continents.

For instance, it is well known that, since the Middle Age, regular floods in
the Thames river cover important pieces of land in the city of London and cause
tremendous damages to buildings and population.

When floods occur in the Thames river, the increase on the level of water
can reach a height of 2 meters. On the other hand, the average level of water
at the London bridge increases at a rate of about 75 centimeters per century
due to melting of polar ice. Obviously, this makes the problem increasingly
dangerous.

Before explaining how the British authorities have handled this problem, it
is important to analyze the process that lead to these important floods.

It is rather complex. Indeed, low atmospheric pressures on the Canadian
coast may produce an increase of about 30 centimeters in the average sea level
in an area of about 1 600 square kilometers approximately. On the other hand,
due to the north wind and ocean currents, this tremendous mass of water may
move across the Atlantic Ocean at a velocity of about 80 to 90 kilometers per
day to reach the coast of Great Britain. Occasionally, the north wind may
even push this mass of water down along the coast of England to reach the
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Thames Estuary. Then, this mass of water is sent back along the Thames and
the conditions for a disaster arise.

In 1953, a tremendous flooding happened killing over 300 people while 64 000
hectares of land were covered by water. After that, the British Government
decided to create a Committee to analyze the problem and the possibilities of
building defense mechanisms. There was consensus on the Committee about
the need of some defense mechanism but not about which one should be
implemented. Finally, in 1970 the decision of building a barrier, the Thames
Barrier, was taken.

Figure 13: The Thames
Barrier.

Obviously, the main goal of the barrier is to
close the river when a dangerous increase of water
level is detected. The barrier was built during
8 years and 4 000 workers participated on that
gigantic engineering programme. The barrier was
finally opened in 1984. It consists of 10 enormous
steel gates built over the basement of reinforced
concrete structures and endowed with sophisticated
mechanisms that allow normal traffic on the river
when the barrier is open but that allows closing
and cutting the traffic and the flux of water when
needed. Since its opening, the barrier has been
closed three times up to now.

Obviously, as for other many control mechanisms, it is a priority to close
the barrier a minimal number of times. Every time the barrier is closed,
important economic losses are produced due to the suppression of river traffic.
Furthermore, once the barrier is closed, it has to remain closed at least for 8
hours until the water level stabilizes at both sides. On the other hand, the
process of closing the barrier takes two hours and, therefore, it is not possible
to wait and see at place the flood arriving but, rather, one has to take the
decision of closing on the basis of predictions. Consequently, extremely efficient
methods of prediction are needed.

At present, the predictions are made by means of mathematical models that
combine or match two different subsystems: the first one concerns the tides
around the British Islands and the second one deals with weather prediction.
In this way, every hour, predictions are made 30 hours ahead on several selected
points of the coast.

The numerical simulation and solution of this model is performed on
the supercomputer of the British Meteorological Office and the results are
transferred to the computer of the Thames Barrier. The data are then
introduced in another model, at a bigger scale, including the North Sea, the
Thames Estuary and the low part of the river where the effect of tides is
important. The models that are being used at present reduce to systems of
partial differential equations and are solved by finite difference methods. The
results obtained this way are compared to the average predictions and, in view
of this analysis, the authorities have the responsibility of taking the decision of
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Figure 14: Design of a combustion controller valve.

closing the barrier or keeping it opened.
The Thames Barrier provides, at present, a satisfactory solution to the

problem of flooding in the London area. But this is not a long term solution
since, as we said above, the average water level increases of approximately
75 centimeters per century and, consequently, in the future, this method of
prevention will not suffice anymore.

We have mentioned here the main task that the Thames Barrier carries out:
the prevention of flooding. But it also serves of course to prevent the water level
to go down beyond some limits that put in danger the traffic along the river.

The Thames Barrier is surely one of the greatest achievements of Control
Theory in the context of the environmental protection. Here, the combination of
mathematical modelling, numerical simulation and Engineering has allowed to
provide a satisfactory solution to an environmental problem of first magnitude.

The reader interested in learning more about the Thames Barrier is referred
to [14].

10. The future

At present, there are many branches of Science and Technology in which
Control Theory plays a central role and faces fascinating challenges. In some
cases, one expects to solve the problems by means of technological developments
that will make possible to implement more sophisticated control mechanisms.
To some extent, this is the case for instance of the laser control of chemical
reactions we have discussed above. But, in many other areas, important
theoretical developments will also be required to solve the complex control
problems that arise. In this Section, we will briefly mention some of the fields
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in which these challenges are present. The reader interested in learning more
about these topics is referred to the SIAM Report [44].

• Large space structures - Quite frequently, we learn about the difficulties
found while deploying an antenna by a satellite, or on getting the precise
orientation of a telescope. In some cases, this may cause huge losses and
damages and may even be a reason to render the whole space mission
useless. The importance of space structures is increasing rapidly, both for
communications and research within our planet and also in the space adventure.
These structures are built coupling several components, rigid and flexible ones.
The problem of stabilizing these structures so that they remain oriented in the
right direction without too large deformations is therefore complex and relevant.
Designing robust control mechanisms for these structures is a challenging
problem that requires important cooperative developments in Control Theory,
computational issues and Engineering.

• Robotics - This is a branch of Technology of primary importance, where
the scientific challenges are diverse and numerous. These include, for instance,
computer vision. Control Theory is also at the heart of this area and its
development relies to a large extent on robust computational algorithms for
controlling. It is not hard to imagine how difficult it is to get a robot “walking”
along a stable dynamics or catching an objet with its “hands” (see other related
comments and Figures in Section 4).

• Information and energy networks - The globalization of our planet is
an irreversible process. This is valid in an increasing number of human activities
as air traffic, generation and distribution of energy, informatic networks, etc.
The dimensions and complexity of the networks one has to manage are so large
that, very often, one has to take decisions locally, without having a complete
global information, but taking into account that local decisions will have global
effects. Therefore, there is a tremendous need of developing methods and
techniques for the control of large interconnected systems.

Figure 15: Numerical approximation of
the pressure distribution on the surface
of an aircraft.

• Control of combustion - This
is an extremely important problem in
Aerospatial and Aeronautical Indus-
try. Indeed, the control of the insta-
bilities that combustion produces is
a great challenge. In the past, the
emphasis has been put on design as-
pects, modifying the geometry of the
system to interfere on the acoustic-
combustion interaction or incorporat-
ing dissipative elements. The ac-
tive control of combustion by means
of thermal or acoustic mechanisms is
also a subject in which almost every-
thing is to be done.
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Figure 16: An aerodynamic obstacle: a Delta Wing.

• Control of fluids - The interaction between Control Theory and Fluid
Mechanics is also very rich nowadays. This is an important topic in Aeronautics,
for instance, since the structural dynamics of a plane in flight interacts with the
flux of the neighboring air. In conventional planes, this fact can be ignored but,
for the new generations, it will have to be taken into account, to avoid turbulent
flow around the wings.

From a mathematical point of view, almost everything remains to be
done in what concerns modelling, computational and control issues. A
crucial contribution was made by J.L. Lions in [31], where the approximate
controllability of the Navier-Stokes equations was conjectured. For an overview
of the main existing results, see [12].

• Solidification processes and steel industry - The increasingly
important development in Material Sciences has produced intensive research
in solidification processes. The form and the stability of the liquid-solid
interface are central aspects of this field, since an irregular interface may
produce undesired products. The sources of instabilities can be of different
nature: convection, surface tension, . . . The Free Boundary Problems area
has experienced important developments in the near past, but very little has
been done from a control theoretical viewpoint. There are very interesting
problems like, for instance, building interfaces by various indirect measurements,
or its control by means of heating mechanisms, or applying electric or magnetic
currents or rotations of the alloy in the furnace. Essentially, there is no
mathematical theory to address these problems.

• Control of plasma - In order to solve the energetic needs of our planet,
one of the main projects is the obtention of fusion reactions under control.
At present, Tokomak machines provide one of the most promising approaches
to this problem. Plasma is confined in a Tokomak machine by means of
electromagnetic fields. The main problem consists then in keeping the plasma
at high density and temperature on a desired configuration along long time
intervals despite its instabilities. This may be done placing sensors that provide
the information one needs to modify the currents rapidly to compensate the
perturbations in the plasma. Still today there is a lot to be done in this area.
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Figure 17: A Tokamak machine.

There are also important identification problems arising due to the difficulties
to get precise measurements. Therefore, this is a field that provides many
challenging topics in the areas of Control Theory and Inverse Problems Theory.

• Biomedical research - The design of medical therapies depends very
strongly on the understanding of the dynamics of Physiology. This is a very
active topic nowadays in which almost everything is still to be done from a
mathematical viewpoint. Control Theory will also play an important role in
this field. As an example, we can mention the design of mechanisms for insulin
supply endowed with control chips.

Figure 18: The plasma
in a Tokamak machine.

• Hydrology - The problem of governing water
resources is extremely relevant nowadays. Sometimes
this is because there are little resources, some
others because they are polluted and, in general,
because of the complexity of the network of supply
to all consumers (domestic, agricultural, industrial,
. . . ). The control problems arising in this context
are also of different nature. For instance, the
parameter identification problem, in which the goal
is to determine the location of sensors that provide
sufficient information for an efficient extraction and
supply and, on the other hand, the design of efficient
management strategies.

• Recovery of natural resources - Important
efforts are being made on the modelling and theoretical and numerical analysis
in the area of simulation of reservoirs of water, oil, minerals, etc. One of the
main goals is to optimize the extraction strategies. Again, inverse problems arise
and, also, issues related to the control of the interface between the injected and
the extracted fluid.
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• Economics - The increasingly important role that Mathematics are
playing in the world of Economics and Finances is well known. Indeed,
nowadays, it is very frequent to use Mathematics to predict the fluctuations
in financial markets. The models are frequently stochastic and the existing
Stochastic Control Theory may be of great help to design optimal strategies of
investment and consumption.

• Manufacturing systems - Large automatic manufacturing systems are
designed as flexible systems that allow rapid changes of the production planning
as a function of demand. But this increasing flexibility is obtained at the price
of an increasing complexity. In this context, Control Theory faces also the need
of designing efficient computerized control systems.

• Evaluation of efficiency on computerized systems - The existing
software packages to evaluate the efficiency of computer systems are based on
its representation by means of the Theory of Networks. The development of
parallel and synchronized computer systems makes them insufficient. Thus, it
is necessary to develop new models and, at this level, the Stochastic Control
Theory of discrete systems may play an important role.

• Control of computer aided systems - As we mentioned above, the
complexity of the control problems we are facing nowadays is extremely high.
Therefore, it is impossible to design efficient control strategies without the
aid of computers and this has to be taken into account when designing these
strategies. This is a multidisciplinary research field concerned with Control
Theory, Computer Sciences, Numerical Analysis and Optimization, among other
areas.

Appendix 1: Pontryagin’s maximum principle

Figure 19: Lev S. Pon-
tryagin (1908–1988).

As we said in Section 3, one of the main
contributions to Control Theory in the sixties was
made by L. Pontryagin by means of the maximum
principle. In this Appendix, we shall briefly recall
the main underlying ideas.

In order to clarify the situation and show how
powerful is this approach, we will consider a minimal
time control problem. Thus, let us consider again the
differential system

{
ẋ = f(x, u), t > 0,
x(0) = x0,

(72)

with state x = (x1(t), . . . , xN (t)) and control u =
(u1(t), . . . , uM (t)).

For simplicity, we will assume that the function
f : RN × RM 7→ RN is well defined and smooth,
although this is not strictly necessary (actually, this is one of the main
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contributions of Pontryagin’s principle). We will also assume that a nonempty
closed set G ⊂ RM is given and that the family of admissible controls is

Uad = {u ∈ L2(0,+∞;RM ) : u(t) ∈ G a.e. }. (73)

Let us introduce a manifold M of RN , with

M = {x ∈ RN : µ(x) = 0 },
where µ : RN 7→ Rq is a regular map (q ≤ N), so that the matrix ∇µ(x) is
of rank q at each point x ∈ M (thus, M is a smooth differential manifold of
dimension N − q). Recall that the tangent space to M at a point x ∈ M is
given by:

TxM = { v ∈ RN : ∇µ(x) · v = 0 }.
Let us fix the initial state x0 in RN \M. Then, to each control u = u(t) we

can associate a trajectory, defined by the solution of (72). Our minimal time
control problem consists in finding a control in the admissible set Uad driving
the corresponding trajectory to the manifold M in a time as short as possible.

In other words, we intend to minimize the quantity T subject to the following
constraints:

T > 0,

For some u ∈ Uad , the associated solution to (72) satisfies x(T ) ∈M.

Obviously, the difficulty of the problem increases when the dimension of M
decreases.

The following result holds (Pontryagin’s maximum principle):

Theorem 6 Assume that T̂ is the minimal time and û, defined for t ∈ [0, T̂ ], is
an optimal control for this problem. Let x̂ be the corresponding trajectory. Then
there exists p̂ = p̂(t) such that the following identities hold almost everywhere
in [0, T̂ ]:

˙̂x = f(x̂, û), − ˙̂p =
(

∂f

∂x
(x̂, û)

)t

· p̂ (74)

and
H(x̂(t), p̂(t), û) = max

v∈G
H(x̂(t), p̂(t), v), (75)

where
H(x, p, v) = 〈f(x, v), p〉 ∀(x, p, v) ∈ RN × RN ×G. (76)

Furthermore, the quantity

H∗(x̂, p̂) = max
v∈G

H(x̂, p̂, v) (77)

is constant and nonnegative (maximum condition) and we have

x̂(T̂ ) = x0, x̂(T̂ ) ∈M (78)
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and
p̂(T̂ ) ⊥ Tx̂(T̂ )M (79)

(transversality condition).

The function H is referred to as the Hamiltonian of (72) and the solutions
(x̂, p̂, û) of the equations (74)–(79) are called extremal points. Of course, p̂ is
the extremal adjoint state.

Very frequently in practice, in order to compute the minimal time T̂ and
the optimal control û, system (74)–(79) is used as follows. First, assuming that
x̂ and p̂ are known, we determine û(t) for each t from (75). Then, with û
being determined in terms of x̂ and p̂, we solve (74) with the initial and final
conditions (78) and (79).

Observe that this is a well posed boundary-value problem for the couple
(x̂, p̂) in the time interval (0, T̂ ).

From (74), the initial and final conditions and (75), provide the control in
terms of the state. Consequently, the maximum principle can be viewed as a
feedback law for determining a good control û.

In order to clarify the statement in Theorem 6, we will now present a
heuristic proof.

We introduce the Hilbert space X × U , where U = L2(0, +∞;RM ) and
X is the space of functions x = x(t) satisfying x ∈ L2(0,+∞;RN ) and
ẋ ∈ L2(0,+∞;RN )5.

Let us consider the functional

F (T, x, u) = T ∀(T, x, u) ∈ R×X × U .

Then, the problem under consideration is

To minimize F (T, x, u), (80)

subject to the inequality constraint

T ≥ 0, (81)

the pointwise control constraints

u(t) ∈ G a.e. in (0, T ) (82)

(that is to say u ∈ Uad) and the equality constraints

ẋ− f(x, u) = 0 a.e. in (0, T ), (83)

x(0)− x0 = 0 (84)

and
µ(x(T )) = 0. (85)

5This is the Sobolev space H1(0, +∞;RN ). More details can be found, for instance, in [3].
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Let us assume that (T̂ , x̂, û) is a solution to this constrained extremal
problem. One can then prove the existence of Lagrange multipliers (p̂, ẑ, ŵ) ∈
X × RN × RN such that (T̂ , x̂, û) is, together with (p̂, ẑ, ŵ), a saddle point of
the Lagrangian

L(T, x, u; p, z, w) = T +
∫ T

0

〈p, ẋ− f(x, u)〉 dt + 〈z, x(0)− x0〉+ 〈w, µ(x(T ))〉

in R+ ×X × Uad ×X × RN × RN .
In other words, we have

{
L(T̂ , x̂, û; p, z, w) ≤ L(T̂ , x̂, û; p̂, ẑ, ŵ) ≤ L(T, x, u; p̂, ẑ, ŵ)
∀(T, x, u) ∈ R+ ×X × Uad , ∀(p, z, w) ∈ X × RN × RN .

(86)

The first inequalities in (86) indicate that the equality constraints (83)−(85)
are satisfied for T̂ , x̂ and û. Let us now see what is implied by the second
inequalities in (86).

First, taking T = T̂ and x = x̂ and choosing u arbitrarily in Uad , we find
that ∫ T̂

0

〈p̂, f(x̂, u)〉 dt ≤
∫ T̂

0

〈p̂, f(x̂, û)〉 dt ∀u ∈ Uad .

It is not difficult to see that this is equivalent to (75), in view of the definition
of Uad .

Secondly, taking T = T̂ and u = û, we see that

∫ T̂

0

〈p, ẋ− f(x, û)〉 dt + 〈z, x(0)− x0〉+ 〈w, µ(x(T̂ ))〉 ≥ 0 ∀x ∈ X. (87)

From (87) written for x = x̂ ± εy, taking into account that (83) − (85) are
satisfied for T̂ , x̂ and û, after passing to the limit as ε → 0, we easily find that

∫ T̂

0

〈p̂, ẏ− ∂f

∂x
(x̂, û) ·y〉 dt+ 〈ẑ, y(0)〉+ 〈ŵ,∇µ(x̂(T̂ )) ·y(T̂ )〉 = 0 ∀y ∈ X. (88)

Taking y ∈ X such that y(0) = y(T̂ ) = 0, we can deduce at once the
differential system satisfied by p̂ in (0, T̂ ). Indeed, after integration by parts,
we have from (88) that

∫ T̂

0

〈− ˙̂p−
(

∂f

∂x
(x̂, û)

)t

· p̂, y〉 dt = 0

for all such y. This leads to the second differential system in (74).
Finally, let us fix λ in RN an let us take in (88) a function y ∈ X such that

y(0) = 0 and y(T̂ ) = λ. Integrating again by parts, in view of (74), we find that

〈p̂(T̂ ), λ〉+ 〈ŵ,∇µ(x̂(T̂ )) · λ〉 = 0
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and, since λ is arbitrary, this implies

p̂(T̂ ) = −
(
∇µ(x̂(T̂ ))

)t

ŵ.

This yields the transversality condition (79).
We have presented here the maximum principle for a minimal time control

problem, but there are many variants and generalizations.
For instance, let the final time T > 0 and a non-empty closed convex set

S ⊂ RN be fixed and let Uad be now the family of controls u ∈ L2(0, T ;RM )
with values in the closed set G ⊂ RM such that the associated states x = x(t)
satisfy

x(0) = x0, x(T ) ∈ S. (89)

Let f0 : RN × RM 7→ R be a smooth bounded function and let us put

F (u) =
∫ T

0

f0(x(t), u(t)) dt ∀u ∈ Uad , (90)

where x is the state associated to u through (72). In this case, the Hamiltonian
H is given by

H(x, p, u) = 〈f(x, u), p〉+ f0(x, u) ∀(x, p, u) ∈ RN × RN ×G. (91)

Then, if û minimizes F over Uad and x̂ is the associated state, the maximum
principle guarantees the existence of a function p̂ such that the following system
holds:

˙̂x = f(x̂, û), − ˙̂p =
(

∂f

∂x
(x̂, û)

)t

· p̂ +
∂f0

∂x
(x̂, û) a.e. in (0,T), (92)

H(x̂(t), p̂(t), û) = max
v∈G

H(x̂(t), p̂(t), v), (93)

x̂(0) = x0, x̂(T ) ∈ S (94)

and
〈p̂(T ), y − x̂(T )〉 ≥ 0 ∀y ∈ S. (95)

For general nonlinear systems, the optimality conditions that the Pontryagin
maximum principle provides may be difficult to analyze. In fact, in many cases,
these conditions do not yield a complete information of the optimal trajectories.
Very often, this requires appropriate geometrical tools, as the Lie brackets
mentioned in Section 4. The interested reader is referred to H. Sussmann [48]
for a more careful discussion of these issues.

In this context, the work by J.A. Reeds and L.A. Shepp [39] is worth
mentioning. This paper is devoted to analyze a dynamical system for a
vehicle, similar to the one considered at the end of Section 4, but allowing
both backwards and forwards motion. As an example of the complexity of the
dynamics of this system, it is interesting to point out that an optimal trajectory
consists of, at most, five pieces. Each piece is either a segment or an arc of
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circumference, so that the whole set of possible optimal trajectories may be
classified in 48 three-parameters families. More recently, an exhaustive analysis
carried out in [49] by means of geometric tools allowed the authors to reduce
the number of families actually to 46.

The extension of the maximum principle to control problems for partial
differential equations has also been the objective of intensive research. As
usual, when extending this principle, technical conditions are required to take
into account the intrinsic difficulties of the infinite dimensional character of the
system. The interested reader is referred to the books by H.O. Fattorini [15]
and X. Li and J. Yong [28].

Appendix 2: Dynamical programming

We have already said in Section 3 that the dynamical programming principle,
introduced by R. Bellman in the sixties, is another historical contribution to
Control Theory.

Figure 20: Richard
Bellman (1920).

The main goal of this principle is the same as of
Pontryagin’s main result: to characterize the optimal
control by means of a system that may be viewed as
a feedback law.

Bellman’s central idea was to do it through the
value function (also called the Bellman function) and,
more precisely, to benefit from the fact that this
function satisfies a Hamilton-Jacobi equation.

In order to give an introduction to this theory, let
us consider for each t ∈ [0, T ] the following differential
problem:

{
ẋ(s) = f(x(s), u(s)), s ∈ [t, T ],
x(t) = x0 .

(96)

Again, x = x(s) plays the role of the state and takes
values in RN and u = u(s) is the control and takes values in RM . The solution
to (96) will be denoted by x(·; t, x0).

We will assume that u can be any measurable function in [0, T ] with values
in a compact set G ⊂ RM . The family of admissible controls will be denoted,
as usual, by Uad .

The final goal is to solve a control problem for the state equation in (96)
in the whole interval [0, T ]. But it will be also useful to consider (96) for each
t ∈ [0, T ], with the “initial” data prescribed at time t.

Thus, for any t ∈ [0, T ], let us consider the problem of minimizing the cost
C(·; t, x0), with

C(u; t, x0) =
∫ T

t

f0(x(τ ; t, x0), u(τ)) dτ + f1(T, x(T ; t, x0)) ∀u ∈ Uad (97)
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(the final goal is to minimize C(·; 0, x0) in the set of admissible controls Uad).
To simplify our exposition, we will assume that the functions f , f0 and f1 are
regular and bounded with bounded derivatives.

The main idea in dynamical programming is to introduce and analyze the so
called value function V = V (x0, t), where

V (x0, t) = inf
u∈Uad

C(u; t, x0) ∀x0 ∈ RN , ∀t ∈ [0, T ]. (98)

This function provides the minimal cost obtained when the system starts
from x0 at time t and evolves for s ∈ [t, T ]. The main property of V is that it
satisfies a Hamilton-Jacobi equation. This fact can be used to characterize and
even compute the optimal control.

Before writing the Hamilton-Jacobi equation satisfied by V , it is convenient
to state the following fundamental result:

Theorem 7 The value function V = V (x0, t) satisfies the Bellman optimality
principle, or dynamical programming principle. According to it, for any x0 ∈
RN and any t ∈ [0, T ], the following identity is satisfied:

V (x0, t) = inf
u∈Uad

[
V (x(s; t, x0), s) +

∫ s

t

f0(x(τ ; t, x0), u(τ)) dτ

]
∀s ∈ [t, T ].

(99)

In other words, the minimal cost that is produced starting from x0 at time
t coincides with the minimal cost generated starting from x(s; t, x0) at time s
plus the “energy” lost during the time interval [t, s]. The underlying idea is that
a control, to be optimal in the whole time interval [0, T ], has also to be optimal
in every interval of the form [t, T ].

A consequence of (99) is the following:

Theorem 8 The value function V = V (x, t) is globally Lipschitz-continuous.
Furthermore, it is the unique viscosity solution of the following Cauchy problem
for the Hamilton-Jacobi-Bellman equation

{
Vt + inf

v∈G

{〈f(x, v),∇V 〉+ f0(x, v)
}

= 0, (x, t) ∈ RN × (0, T ),

V (x, T ) = f1(T, x), x ∈ RN .
(100)

The equation in (100) is, indeed, a Hamilton-Jacobi equation, i.e. an
equation of the form

Vt + H(x,∇V ) = 0,

with Hamiltonian

H(x, p) = inf
v∈G

{〈f(x, v), p〉+ f0(x, v)
}

(101)

(recall (91)).
The notion of viscosity solution of a Hamilton-Jacobi equation was

introduced to compensate the absence of existence and uniqueness of classical
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solution, two phenomena that can be easily observed using the method of
characteristics. Let us briefly recall it.

Assume that H = H(x, p) is a continuous function (defined for (x, p) ∈
RN ×RN ) and g = g(x) is a continuous bounded function in RN . Consider the
following initial-value problem:

{
yt + H(x,∇y) = 0, (x, t) ∈ RN × (0,∞),
y(x, 0) = g(x), x ∈ RN .

(102)

Let y = y(x, t) be bounded and continuous. It will be said that y is a viscosity
solution of (102) if the following holds:

• For each v ∈ C∞(RN × (0,∞)), one has
{

If y − v has a local maximum at (x0, t0) ∈ RN × (0,∞), then
vt(x0, t0) + H(x0,∇v(x0, t0)) ≤ 0

and
{

If y − v has a local minimum at (x0, t0) ∈ RN × (0,∞), then
vt(x0, t0) + H(x0,∇v(x0, t0)) ≥ 0.

• y(x, 0) = g(x) for all x ∈ RN .

This definition is justified by the following fact. Assume that y is a classical
solution to (102). It is then easy to see that, whenever v ∈ C∞(RN × (0,∞))
and vt(x0, t0)+H(x0,∇v(x0, t0)) > 0 (resp. < 0), the function y−v cannot have
a local maximum (resp. a local minimum) at (x0, t0). Consequently, a classical
solution is a viscosity solution and the previous definition makes sense.

On the other hand, it can be checked that the solutions to (102) obtained
by the vanishing viscosity method satisfy these conditions and, therefore, are
viscosity solutions. The vanishing viscosity method consists in solving, for each
ε > 0, the parabolic problem

{
yt + H(x,∇y) = ε∆y, (x, t) ∈ RN × (0,∞),
y(x, 0) = g(x), x ∈ RN (103)

and, then, passing to the limit as ε → 0+.
A very interesting feature of viscosity solutions is that the two properties

entering in its definition suffice to prove uniqueness. The proof of this uniqueness
result is inspired on the pioneering work by N. Kruzhkov [22] on entropy
solutions for hyperbolic equations. The most relevant contributions to this
subject are due to M. Crandall and P.L. Lions and L.C. Evans, see [6], [10].

But let us return to the dynamical programming principle (the fact that the
value function V satisfies (99)) and let us see how can it be used.

One may proceed as follows. First, we solve (100) and obtain in this way
the value function V . Then, we try to compute û(t) at each time t using the
identities

f(x̂(t), û(t)) · ∇V (x̂(t), t) + f0(x̂(t), û(t)) = H(x̂(t),∇V (x̂(t), t)), (104)
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i.e. we look for the values û(t) such that the minimum of the Hamiltonian in
(101) is achieved. In this way, we can expect to obtain a function û = û(t)
which is the optimal control.

Recall that, for each û, the state x̂ is obtained as the solution of
{ ˙̂x(s) = f (x̂(s), û(s)) , s ∈ [0, T̂ ],

x̂(0) = x0 .
(105)

Therefore, x̂ is determined by û and (104) is an equation in which û(t) is in fact
the sole unknown.

In this way, one gets indeed an optimal control û in feedback form that
provides an optimal trajectory x̂ (however, at the points where V is not smooth,
important difficulties arise; for instance, see [16]).

If we compare the results obtained by means of the maximum principle and
the dynamical programming principle, we see that, in both approaches, the
main conclusions are the same. It could not be otherwise, since the objective
was to characterize optimal controls and trajectories.

However, it is important to underline that the points of view are completely
different. While Pontryagin’s principle extends the notion of Lagrange
multiplier, Bellman’s principle provides a dynamical viewpoint in which the
value function and its time evolution play a crucial role.

The reader interested in a simple but relatively complete introduction to
Hamilton-Jacobi equations and dynamical programming can consult the book
by L.C. Evans [11]. For a more complete analysis of these questions see for
instance W. Fleming and M. Soner [16] and P.-L. Lions [32]. For an extension
of these methods to partial differential equations, the reader is referred to the
book by X. Li and J. Yong [28].
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[5] J. Céa, Optimisation: Théorie et Algorithmes, Dunod, Gauthiers-Villars,
Paris 1971.

[6] M. Crandall and P.L. Lions, Viscosity solutions of Hamilton-Jacobi
equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1–42.

[7] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II,
Interscience Publishers, New York 1962.



An Overview of Control Theory 59

[8] R.C. Dorf, Sistemas Modernos de Control, Addison-Wesley Iberoameri-
cana, Madrid 1989.

[9] I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels,
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