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Introduction

Flow control, as many other fields of applied mathematics involves:

Partial Differential Equations: Models describing motion in
the various fields of Mechanics: Elasticity, Fluids,...

Numerical Analysis: Allowing to discretize these models so
that solutions may be approximated algorithmically.

Optimal Design: Design of shapes to enhance the desired
properties (bridges, dams, aeroplanes,..)

Control: Automatic and active control of processes to
guarantee their best possible behavior and dynamics.
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These topics meet together in many relevant applications.

Noise reduction in cavities and vehicles.

Laser control in quantum mechanical and molecular systems.

Seismic waves, earthquakes.

Flexible structures.

Environment: the Thames barrier.

Optimal shape design in aeronautics.

Human cardiovascular system.

Oil prospection and recovery.

Irrigation systems.

Complexity arises in many ways:

Geometry;

Oscillations.
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The logo of the web page “Domain decomposition”, one of the
most widely used computational techniques for solving PDE in
domains (“zatitu eta irabazi”), and a drawing of the human
cardiovascular system illustrating the graph along which blood
circulates taken from the web page of A. Quarteroni.
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Karl Hermann Amandus Schwarz (25 January 1843 – 30 November
1921)

The Schwarz alternating method is an iterative method to find the
solution of a partial differential equations on a domain which is the
union of two overlapping subdomains, by solving the equation on
each of the two subdomains in turn, taking always the latest values
of the approximate solution as the boundary conditions. It was first
formulated by H. A. Schwarz and served as a theoretical tool.
Nowadays is systematically used in most computational challenges
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Marius Sophus Lie (17 December 1842 – 18 February 1899)

exp(A + B) = lim
n→∞

[
exp(A/n) exp(B/n)

]n
.

exp(A + B) ∼ exp(A/n) exp(B/n).... exp(A/n) exp(B/n).
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Computer simulation → far beyond the fields in which its use is
justified (consistency + stability ≡ convergence).
The risk: To end up getting numerical data whose validity....
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Is this difficulty solvable in practice?

Solvable for problems with well known data.

Much harder for inverse, design and control problems,,,,

In those cases the obtained
final numerical results and
simulations may simply
mean nothing.
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Shape design in aeronautics

Optimal shape design in aeronautics. Two aspects:

Shocks.
Oscillations.

Optimal shape ∼ Active control. The shape of the cavity or airfoil
controls the surrounding flow of air.
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Optimal shape design in aeronautics

Aeronautics: to simulate and optimize complex processes is
indispensable.

Long tradition: J. L. Lions, A. Jameson,...

However, this needs an immense computational effort.

For practical optimization problems, in which at least 100
design variables are to be considered, current methodological
approaches applied in industry will need more than a year to
obtain an optimized aircraft.
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Mathematical problem formulation

Minimize
J(Ω∗) = min

Ω∈Cad
J(Ω)

Cad = class of admissible domains.
J = cost functional (drag reduction, lift maximization, exploitation
cost, overall cost over the life cycle of the aircraft, benefit
maximization, etc).
J depends on Ω through u(Ω), solution of the PDE (elasticity,
Fluid Mechanics,...).

The domains under consideration
are often complex. Geometric and
parametrization issues play a key
role.
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The dependence of the functional
on the domain, through the
solution of the PDE is complex as
well. J it is far from being a nice
convex function.

Analytical difficulties:

Lack of good existence, uniqueness, and continuous
dependence theory for the PDE.

http://www.claymath.org/millennium/Navier-Stokes Equations/
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Lack of convexity of the functional.

Lack of compactness within the class of relevant domains...
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In practice

Descent algorithm (gradient based method) on a discrete version
of the problem:

The domains Ω have been discretized (finite element mesh)

The PDE has been replaced by a numerical scheme,

The functional J has been replaced by a discrete version.
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Classical steepest descent:

J : H → R. Two main assumptions:

< ∇J(u)−∇J(v), u−v >≥ α|u−v |2, |∇J(u)−∇J(v)|2 ≤ M|u−v |2.

Then, for
uk+1 = uk − ρ∇J(uk),

we have

|uk − u∗| ≤ (1− 2ρα + ρ2M)k/2|u1 − u∗|.

Convergence is guaranteed for 0 < ρ < 1 small enough.

Compare with the continuous marching gradient system

u′(τ) = −∇J(u(τ)).
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LaSalle’s invariance principle

Taking the scalar product in equation u′(t) = −∇J(u(t)) with
∇J(u(t)) we deduce that

dJ(u(t)/dt = −|∇J(u(t))|2.

Thus, for the gradient system, J(u(t)) constitutes a Lyapunov
function whose value diminishes along trajectories.
Assume that J is bounded below. This is typically the case when
searching the minimizers of J under the standard coercivity and
continuity assumptions.
Then, necessarily, J(u(t)) has a limit I as t →∞.
Furthermore, when J is coercive, this necessarily means that the
trajectory {u(t)}t≥0 is bounded. In the finite-dimensional context
this means that the trajectory is precompact. In the
infinite-dimensional case this requires further analysis of the
dynamical properties of the evolution system under consideration.
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Let us then define the ω-limit set. Given the initial datum u0 of
the solution of the gradient system, ω(u0) is the set of
accumulation points of the trajectory as t →∞. Obviously
J(z) = I for all z ∈ ω(u0). On the other hand, if we denote by
z(t) the trajectory of the same gradient system starting at z at
time t = 0, by the semigroup property, we also deduce that
J(z(t)) = I for all t ≥ 0. This implies, in particular, that z is a
critical point of J: J(z) = 0. In case J has an unique minimizer, as
it happens when J is strictly convex, then z is this minimizer.
Taking into account that the accumulation point is unique, we
deduce that ω(u0) = {z}. This implies that the whole trajectory
u(t) converges to z .
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As we mentioned above, in the infinite-dimensional case, the
boundedness of trajectories does not necessarily imply that they
are relatively compact. The compactness of trajectories is normally
achieved by imposing further monotonicity properties.
Indeed, when J is convex, distances diminish along trajectories.
Indeed, if u and v are two trajectories of the same system then
|u(t)− v(t)| diminishes as time evolves.
According to this it is sufficient to prove convergence towards
equilibrium for a dense set of initial data. This dense set is chosen
normally to ensure compactness through the compactness of the
embedding into the phase space, and the boundedness of the
trajectories in that subspace.
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The Direct Method of the Calculus of Variations (DMCV)

Consider a continuous, convex and coercive functional J : H → R
in a Hilbert space H. Then, the functional achieves its minimum in
at least one point:

∃h ∈ H : J(h) = min
g∈H

J(g). (1)

This can be easily proved in a systematic manner by means of the
DMCV:
Step 1. Define the infimimum

I = inf
g∈H

J(g)

that, by the coercivity of J, necessarily satisfies I > −∞.
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Step 2. Consider the minimizing sequence

(gn)n∈N ⊂ H : J(gn)↘ I . (2)

By the coercivity of the functional J we deduce that (gn)n∈N is
bounded in H.

Step 3. H being a Hilbert space, there exists a weakly convergent
subsequence (gn)n∈N

gn ⇀ g en H. (3)

Step 4. J being continuous in H and convex it is lowe
semicontinuous with respect to the weak topology. Therefore,

J(g) 6 lim
n→∞

J(gn). (4)
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We deduce that J(g) 6 I which, by the definition of infimum,
implies that J(g) = I , which shows that the minimum is achieved.
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Going back, to the shape optimization problem, we end up with:

A discrete optimization problem of huge dimensions,

No idea of whether discrete optima, if they exist, will converge
or not to the optimal continuous one.

Analytical difficulties.
Divergence of algorithms.

The worst scenario: When using results provided by divergent
algorithms, for which divergence is hard to detect.

Enrique Zuazua Flow control in the presence of shocks: theory, numerics and applications



Intro Divide and conquer Computing: How far? Shape design in aeronautics The models in aeronautics Continuous versus discrete Shocks: A remedy OTHER APPLICATIONS Conclusions

Going back, to the shape optimization problem, we end up with:

A discrete optimization problem of huge dimensions,

No idea of whether discrete optima, if they exist, will converge
or not to the optimal continuous one.

Analytical difficulties.
Divergence of algorithms.

The worst scenario: When using results provided by divergent
algorithms, for which divergence is hard to detect.

Enrique Zuazua Flow control in the presence of shocks: theory, numerics and applications



Intro Divide and conquer Computing: How far? Shape design in aeronautics The models in aeronautics Continuous versus discrete Shocks: A remedy OTHER APPLICATIONS Conclusions

An example: boundary control of vibrations.

Can we guarantee this kind of pathologies do not arise in realistic
problems of optimal shape design in aeronautics?
How to detect them? How to avoid them?
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The relevant models in aeronautics (Fluid Mechanics):

Navier-Stokes equations;

Euler equations;

Turbulent models: Reynolds-Averaged Navier-Stokes (RANS),
Spalart-Allmaras Turbulence Model, k − ε model;
....

Burgers equation (as a 1− d theoretical laboratory).
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Euler equations

{
∂tU + ~∇ · ~F = 0, in Ω,
~v · ~nS = 0, on S ,

with suitable boundary conditions at infinity,
U = (ρ, ρvx , ρvy , ρE )= conservative variables, ~F = (Fx ,Fy )=flux

Fx =


ρvx

ρv2
x + P
ρvxvy

ρvxH

 , Fy =


ρvy

ρvxvy

ρv2
y + P
ρvyH

 , (5)

ρ = density , ~v = (vx , vy ) = velocity, E = total energy, P =
pressure, H = enthalpy, where

P = (γ − 1)ρ

(
E − 1

2
(u2 + v2)

)
, H = E +

P

ρ
.

Enrique Zuazua Flow control in the presence of shocks: theory, numerics and applications



Intro Divide and conquer Computing: How far? Shape design in aeronautics The models in aeronautics Continuous versus discrete Shocks: A remedy OTHER APPLICATIONS Conclusions

Solutions may develop shocks or quasi-shock configurations.

For shock solutions, classical calculus fails: The derivative of a
discontinuous function is a Dirac delta;

For quasi-shock solutions the sensitivity (gradient) is so large
that classical sensitivity calculus is meaningless.
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Computational fluid dynamics: Overview

Incompressible Flows: At slow motion of a fluid or gas (low
Mach numbers) the density and temperature changes can be
neglected. The flow equations can be simplified into
incompressible Navier- Stokes equations.

Compressible Flows: Density and temperature changes are
not anymore neglectable due to higher Mach numbers. An
important characteristic of compressible flows is the
occurrence of shocks which leads to discontinuities.
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Example for incompressible flow

ONERA: M < 0.3
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Example for incompressible flow

Soaring plane
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Example for compressible flow

Passenger and transport aircraft with transonic flow
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Transonic refers to a range of velocities just below and above the
speed of sound (about mach 0.8 – 1.2). It is defined as the range
of speeds between the critical mach number, when some parts of
the airflow over an aircraft become supersonic, and a higher speed,
typically near Mach 1.2, when all of the airflow is supersonic.
Between these speeds some of the airflow is supersonic, and some
is not.
Severe instability can occur at transonic speeds. Shock
waves move through the air at the speed of sound. When an
object such as an aircraft also moves at the speed of sound, these
shock waves build up in front of it to form a single, very large
shock wave. During transonic flight, the plane must pass through
this large shock wave, as well as contending with the instability
caused by air moving faster than sound over parts of the wing and
slower in other parts. The difference in speed is due to Bernoulli’s
principle.
Transonic speeds can also occur at the tips of rotor blades of
helicopters and aircraft.

Enrique Zuazua Flow control in the presence of shocks: theory, numerics and applications



Intro Divide and conquer Computing: How far? Shape design in aeronautics The models in aeronautics Continuous versus discrete Shocks: A remedy OTHER APPLICATIONS Conclusions

Example for compressible flow

NASA: Hypersonic flow with shocks at the nose
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Example for compressible flow

NASA: Visible shocks at the nose in the windtunnel test
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The 1− d model: Burgers equation

J. M. Burgers, Application of a model system to illustrate
some points of the statistical theory of free turbulence, Proc.
Konink. Nederl. Akad. Wetensch. 43, 2 D12 (1940).

E. Hopf, The partial dfferential equation ut + uux = uxx ,
Comm. Pure Appl. Math. 3, 20–230 (1950).

J. D. Cole, On a quasi-linear parabolic equation occurring in
aerodynamics, Quart. Appl. Math. 9, 225 – 236 (1951).

Celebrated because:

It has the same scales as the Navier-Stokes equations

ut − µ∆u + u · ∇u = ∇p.

There is a change of variable reducing the problem to the
linear heat equation. This leads to explicit solutions.

One can show explicitly the presence of shocks.
G.B. Whitham, Linear and nonlinear waves, New York,
Wiley-Interscience, 1974.
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Viscous version:

∂u

∂t
− ν ∂

2u

∂x2
+ u

∂u

∂x
= 0.

Inviscid one:
∂u

∂t
+ u

∂u

∂x
= 0.

Enrique Zuazua Flow control in the presence of shocks: theory, numerics and applications



Intro Divide and conquer Computing: How far? Shape design in aeronautics The models in aeronautics Continuous versus discrete Shocks: A remedy OTHER APPLICATIONS Conclusions

The Hopf-Cole transform

Let u = u(x , t) be a solution of

ut − νuxx + (u2)x = 0.

such that | u(x , t) | + | ux(x , t) |→ 0 as | x |→ ∞.
Then

v = v(x , t) =

∫ x

−∞
u(s, t)ds (6)

solves
vt − νvxx+ | vx |2= 0. (7)

Define then
w = v(x , t/ν)

that satisfies

wt − wxx +
1

ν
| wx |2= 0. (8)
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On the other hand,
z = 2/ν (9)

satisfies
zt − zxx+ | zx |2= 0. (10)

Introduce, at last,
η(x , t) = e−z (11)

that solves the heat equation

ηt − ηxx = 0. (12)

Undoing the change of variables

u = vx

v(·, t/ν) = w(·, t) = νz(·, t) = −ν log(η).

Then

u(x , t) = −ν ηx(x , νt)

η(x , νt)
. (13)

The solutionη of this heat equation can be obtained by convolution
with the heat kernel:

G (x , t) = (4πt)−1/2 exp
(
− | x |2

/
4t
)
, (14)

so that
η(x , t) =

[
G (·, t) ∗ η0(·)

]
(x), (15)

where η0 is the initial datum of η.
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On the other hand,

Gx(x , t) = − x

4
√
πt3/2

exp
(
− | x |2

/
4t
)
. (16)

In this way we get

u(x , t) =

∫
R(x − y)e−|x−y |2/4νtη0(y)dy

2t
∫

R e−|x−y |2/4νtη0(t)dy
. (17)

But
η0(x) = e−

R x
−∞ u0(σ)dσ/ν . (18)

So that

uν(x , t) =

∫
R(x − y)e−H(x , y , t)/νdy

2t
∫

R e−H(x , y , t)/νdy
(19)

where

H(x , y , t) =
| x − y |2

4t
+

∫ y

−∞
u0(σ)dσ. (20)
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Shocks

We write the inviscid Burgers equation in the form

ut + 2uux = 0. (21)

Solutions, while smooth, are constant along characetristics

u(x(t), t) = C ,

where x = x(t) is given by the equation

x ′(t) = 2u(x(t), t). (22)

Since u is constant along characteristics, u(x(t), t) has to coincide
with its value at t = 0, so that

u(x(t), t) = u0(x0), (23)

where x0 is the starting point of the characteristic line.
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The equation of the characteristic line then reads

x(t) = 2u0(x0)t + x0 (24)

and therefore
u(x(t), t) = u0(x0). (25)

Thus u is constant along lines with slope 1/2u0in the (x , t)-plane.
This implies that, if u0 is decreasing, u has to generate
discontinuities in finite-time. Indeed, the existence of x0 < x1 such
that u(x0) > u(x1), shows that the characteristic lines emanating
from x0 and x1 intersect in some time t∗ at some x∗. The solution
will then be discontinuous at (x∗, t∗) since the values u0(x0) and
u0(x1) are incompatible.
The shock or discontinuity time t∗ can be computed by passing to
the limit as x0 → x1 in the identity

2u0(x0)t + x0 = 2u0(x1)t + x1.
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This yields

t∗ =
x1 − x0

2(u0(x0)− u0(x1))
= − x0 − x1

2(u0(x0)− u0(x1))
. (26)

As x0 → x1 this gives

t∗ = − 1

2u′0(x0)
. (27)

The minimal shock time is then

t∗ =
1

2 maxx0∈R

(
− u′0(x0)

) . (28)
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Vanishing viscosity

We analyze the behavior as ν → 0 of the solutions of the viscous
Burgers equation. As we shall see, they converge to the so called
entropy solutions of the inviscid one.
As ν → 0+, the integrals in the Hopf-Cole representation of
solutions concentrate at the points where H achieves its minimum.
The critical values of H are characterized by:

Hy = −x − ξ
2t

+ u0(ξ) = 0⇔ ξ = x − 2tu0(ξ), (29)

in which

H = −tu2
0(ξ) +

∫ ξ

−∞
u0(σ)dσ. (30)
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The contribution of the integral 1∫
R

f (y)e−H/νdy (31)

around the minimum y = ξ is

f (ξ)

√
2πν

H ′′(ξ)
e−H(ξ)/ν . (32)

In our case

H ′′(ξ) =
1

2t
. (33)

We get∫
R

(x − y)e−H/νdy ∼ (x − ξ)

√
πν

t
e−[tu2

0(ξ)+
R ξ
−∞ u0(σ)dσ]ν , (34)∫

R
e−H/νdy ∼

√
πν

t
e−[tu2

0(ξ)+
R ξ
−∞ u0(σ)dσ]. (35)

1Carl M. Bender and Steven A. Orszag, Advanced Mathematical Methods
for Scientists and Engineers: Asymptotic Methods and Perturbation Theory ,
Springer, 1999
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Then

uν(x , t) ∼ (x − ξ)

2t
(36)

where ξ is characterized by the equation

ξ = x − 2tu0(ξ) (37)

which is precisely the solution obtained by the method of
characteristics:

uν(x , t) ∼ u0(ξ) (38)

This is valid when H has only one minimum.
When u0 is increasing and smooth there is only one solution and
we recover the same solution as the one obtained by the method of
characteristics.
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When H has several minima ξ1, . . . , ξN , each of them provides a
contribution of the same form. But, in view of the exponential
terms, only the absolute minimum of H matters.
When there are two absolute minima ξ1, ξ2, the asymptotic form
of uν would be:

uν(x , t) ∼ u0(ξ1) + u0(ξ2). (39)
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We now consider the Riemann problem

u0(x) =

{
0, x < 0
1, x > 0.

(40)

The system characterizing the minima can be written as{
ξ = x , si ξ < 0
ξ + 2t = x , si ξ > 0.

(41)

When x < 0, this gives ξ = x and then the limit is u = u0(ξ) = 0.
When x > 2t we get ξ = x − 2t and then the solution is u ≡ 1,
which coincides with the result that the method of characteristic
yields. By an approximation argument, in the intermediate zone we
get ξ = x/(1 + 2t) and

u(x , t) =
x

2t
. (42)

The rarefaction wave u = x/2t connects the value u = 0 to the
left and x = 1 to the right.
This is the physical or entropy solution.
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We now consider the Riemann problem

u0(x) =

{
1, x < 0
0, x > 0.

(43)

In this case we know there is a shock like solution.
The method of vanishing viscosity confirms this is the entropy or
physical solution.
In this case, the function H has two local minima, but when
determining the global one we get either the value u ≡ 0 or u ≡ 1
depending on whether we are on the left or right of the shock.
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The Oleinick entropy condition

We claim that physical solutions of the Burgers equation satisfy

ux ≤ 1/2t. (44)

Formally, if u solves the Burgers equation v = ux satisfies

vt + (2uv)x = vt + 2v2 + 2uvx = 0. (45)

By the maximum principle we deduce that

v ≤ w (46)

where w = w(t) is the solution of

wt + 2w2 = 0 (47)

with initial datum w(0) =∞: w(t) = 1/2t.
This formal argument can be fully justified for the physical
solutions that are obtained as zero viscosity limits.
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Summary on entropy solutions of the Burgers equation

Entropy solutions are the physical ones

Entropy solutions are characterized by the zero viscosity limit.

Entropy solutions are characterized also by the Oleinick
inequality.

Entropy solutions are unique (celebrated result by Kruzkov).

All this can be extended to multi-dimensional scalar conservation
laws:

ut + div(~f (u)) = 0.

Note however that, in real applications, we often deal with systems,
where theory if much more complex and only partially complete.
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Solution as a pair: flow+shock variables

Then the pair (u, ϕ)= (flow solution, shock location) solves:
∂tu + ∂x(

u2

2
) = 0, in Q− ∪ Q+,

ϕ′(t)[u]ϕ(t) =
[
u2/2

]
ϕ(t)

, t ∈ (0,T ),

ϕ(0) = ϕ0,

u(x , 0) = u0(x), in {x < ϕ0} ∪ {x > ϕ0}.
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The Rankine–Hugoniot equation

ϕ′(t)[u]ϕ(t) =
[
u2/2

]
ϕ(t)

governs the behaviour of shock waves normal to the oncoming
flow. It is named after physicists William John Macquorn Rankine
(5 July 1820 – 24 December 1872) and Pierre Henri Hugoniot
(1851 –1887).

Rankine, W. J. M. , On the thermodynamic theory of waves of
finite longitudinal disturbances, Phil. Trans. Roy. Soc. London,
160, (1870).
Hugoniot, H., Propagation des Mouvements dans les Corps et
spcialement dans les Gaz Parfaits, Journal de l’Ecole
Polytechnique, 57, (1887); 58, (1889).
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A new viewpoint: Solution = Solution + shock location. Then the
pair (u, ϕ) solves:

∂tu + ∂x(
u2

2
) = 0, in Q− ∪ Q+,

ϕ′(t)[u]ϕ(t) =
[
u2/2

]
ϕ(t)

, t ∈ (0,T ),

ϕ(0) = ϕ0,

u(x , 0) = u0(x), in {x < ϕ0} ∪ {x > ϕ0}.
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The linearized system

As we have seen, when applying descent algorithms, we have to
compute the gradient of the functional J to be minimized. This, in
practice, requires computing the derivatives of the solutions of the
underlying PDE with respect to the various design parameters.
This ends up requiring the linearization of the nonlinear PDE’s in
the models under consideration.
When solutions are smooth and unique and depend stably on the
various parameters entering in the system, linearization can be
performed as in the context of ODE’s:

x ′(t) = f (x(t)); x(0) = x0.

Let xδ be the solution with initial datum x0 + δz0.
What is the derivative of xδ with respect to δ, that we denote by z?
The linearized state can be characterized as the unique solution of:

z ′(t) = f ′(x(t))z(t); z(0) = z0.
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The same analysis applies to the solutions of the viscous Burgers
equation:

ut − νuxx + (u2)x = 0, x ∈ R, t > 0; u(x , 0) = u0(x), x ∈ R.

If uδ denotes the solution of the equation with initial datum
u0(x) + δz0(x) the linearized state z derivative of uδ with respect
to δ is characterized as the solution of

zt − νzxx + (2uz)x = 0, x ∈ R, t > 0; z(x , 0) = z0(x), x ∈ R.

This linearization is fully justified in the L2(R)-setting, in particular.
More precisely, when u0 and z0 are in L2(R), both solution belong
to C ([0,∞); L2(R)) ∩ L2(0,T ; H1(R)) and z is the derivative of uδ
with respect to δ in that space.
As we shall see, this fails to be true in the inviscid case.
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In the inviscid case, the simple and “natural” rule

∂u

∂t
+ u

∂u

∂x
= 0→ ∂δu

∂t
+ δu

∂u

∂x
+ u

∂δu

∂x
= 0

breaks down in the presence of shocks

δu = discontinuous, ∂u
∂x = Dirac delta ⇒ δu ∂u

∂x ????

The difficulty may be overcame with a suitable notion of measure
valued weak solution using Volpert’s definition of conservative
products and duality theory (Bouchut-James, Godlewski-Raviart,...)
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The corresponding linearized system is:

∂tδu + ∂x(uδu) = 0, in Q− ∪ Q+,

δϕ′(t)[u]ϕ(t) + δϕ(t)
(
ϕ′(t)[ux ]ϕ(t) − [uxu]ϕ(t)

)
+ϕ′(t)[δu]ϕ(t) − [uδu]ϕ(t) = 0, in (0,T ),

δu(x , 0) = δu0, in {x < ϕ0} ∪ {x > ϕ0},
δϕ(0) = δϕ0,

Majda (1983), Bressan-Marson (1995), Godlewski-Raviart (1999),
Bouchut-James (1998), Giles-Pierce (2001), Bardos-Pironneau
(2002), Ulbrich (2003), ...
None seems to provide a clear-cut recipe about how to proceed
within an optimization loop.
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Continuous versus discrete

Two approaches:

Continuous: PDE+ Optimal shape design → implement that
numerically.

Discrete: Replace PDE and optimal design problem by
discrete version → Apply discrete tools

Do these processes lead to the same result?

OPTIMAL DESIGN + NUMERICS
=

NUMERICS + OPTIMAL DESIGN?
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NO!!!!!!
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Discrete: Discretization + gradient

Advantages: Discrete clouds of values. No shocks. Automatic
differentiation, ...

Drawbacks:

”Invisible” geometry.

Scheme dependent.

Continuous: Continuous gradient + discretization.

Advantages: Simpler computations. Solver independent.
Shock detection.

Drawbacks:

Yields approximate gradients.

Subtle if shocks.
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SHOCKS: A MUST

Discrete approach: You do not see them

Continuous approach: They make life difficult
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A new method

A new method: Splitting + alternating descent algorithm.
C. Castro, F. Palacios, E. Z., M3AS, 2008.
Ingredients:

The shock location is part of the state.

State = Solution as a function + Geometric location of
shocks.

Alternate within the descent algorithm:

Shock location and smooth pieces of solutions should be
treated differently;
When dealing with smooth pieces most methods provide
similar results;
Shocks should be handeled by geometric tools, not only those
based on the analytical solving of equations.

Lots to be done: Pattern detection, image processing,
computational geometry,... to locate, deform shock locations,....
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Compare with the use of shape and topological derivatives in
elasticity:
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An example: Inverse design of initial data

Consider

J(u0) =
1

2

∫ ∞
−∞
|u(x ,T )− ud(x)|2dx .

ud = step function.
Gateaux derivative:

δJ =

∫
{x<ϕ0}∪{x>ϕ0}

p(x , 0)δu0(x) dx + q(0)[u]ϕ0δϕ0,

(p, q) = adjoint state

−∂tp − u∂xp = 0, in Q− ∪ Q+,
[p]Σ = 0,
q(t) = p(ϕ(t), t), in t ∈ (0,T )
q′(t) = 0, in t ∈ (0,T )
p(x ,T ) = u(x ,T )− ud , in {x < ϕ(T )} ∪ {x > ϕ(T )}

q(T ) =
1
2 [(u(x ,T )−ud )2]

ϕ(T )

[u]ϕ(T )
.
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The gradient is twofold= variation of the profile + shock
location.

The adjoint system is the superposition of two systems =
Linearized adjoint transport equation on both sides of the
shock + Dirichlet boundary condition along the shock that
propagates along characteristics and fills all the region not
covered by the adjoint equations.
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State u and adjoint state p when u develops a shock:
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The adjoint system

Adjoint system = shorcut = all derivaties in one shot!
Consider the functional

J(ε) =
1

2
< Bu, u >, B = symmetric

u = u(ε) = state, A(ε)u(ε) = b(ε).

Then,

δJ(0) =< Bu, δu >, A(0)δu = δb − δA(0)u(0).

A∗(0)p = Bu (adjoint system),

and

< Bu, δu >=< A∗(0)p, δu >=< p,A(0)δu >=< p, δb−δA(0)u(0) > .
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The discrete aproach

Recall the continuous functional

J(u0) =
1

2

∫ ∞
−∞
|u(x ,T )− ud(x)|2dx .

The discrete version:

J∆(u0
∆) =

∆x

2

∞∑
j=−∞

(uN+1
j − ud

j )2,

where u∆ = {uk
j } solves the 3-point conservative numerical

approximation scheme:

un+1
j = un

j − λ
(
gn
j+1/2 − gn

j−1/2

)
= 0, λ =

∆t

∆x
,

where, g is the numerical flux

gn
j+1/2 = g(un

j , u
n
j+1), g(u, u) = u2/2.
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Examples of numerical fluxes

gLF (u, v) =
u2 + v2

4
− v − u

2λ
,

gEO(u, v) =
u(u + |u|)

4
+

v(v − |v |)
4

,

gG (u, v) =

{
minw∈[u,v ] w

2/2, if u ≤ v ,
maxw∈[u,v ] w

2/2, if u ≥ v ,
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The Γ-convergence of discrete minimizers towards continuous ones
is guaranteed for the schemes satisfying the so called one-sided
Lipschitz condition (OSLC):

un
j+1 − un

j

∆x
≤ 1

n∆t
,

which is the discrete version of the Oleinick condition for the
solutions of the continuous Burgers equations

ux ≤
1

t
,

which excludes non-admissible shocks and provides the needed
compactness of families of bounded solutions.
As proved by Brenier-Osher, 2 Godunov’s, Lax-Friedfrichs and
Engquits-Osher schemes fulfil the OSLC condition.

2Brenier, Y. and Osher, S. The Discrete One-Sided Lipschitz Condition for
Convex Scalar Conservation Laws, SIAM Journal on Numerical Analysis, 25 (1)
(1988), 8-23.
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A new method: splitting+alternating descent

Generalized tangent vectors (δu0, δϕ0) ∈ Tu0 s. t.

δϕ0 =

(∫ ϕ0

x−
δu0 +

∫ x+

ϕ0

δu0

)/
[u]ϕ0 .

do not move the shock δϕ(T ) = 0 and

δJ =

∫
{x<x−}∪{x>x+}

p(x , 0)δu0(x) dx ,{
−∂tp − u∂xp = 0, in Q̂− ∪ Q̂+,
p(x ,T ) = u(x ,T )− ud , in {x < ϕ(T )} ∪ {x > ϕ(T )}.

For those descent directions the adjoint state can be computed by
“any numerical scheme”!
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Analogously, if δu0 = 0, the profile of the solution does not
change, δu(x ,T ) = 0 and

δJ = −
[

(u(x ,T )− ud(x))2

2

]
ϕ(T )

[u0]ϕ0

[u(·,T )]ϕ(T )
δϕ0.

This formula indicates whether the descent shock variation is
left or right!

WE PROPOSE AN ALTERNATING STRATEGY
FOR DESCENT

In each iteration of the descent algorithm do two steps:

Step 1: Use variations that only care about the shock location

Step 2: Use variations that do not move the shock and only
affect the shape away from it.
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An open problem: Alternating descent / steepest descent.

Steepest descent:

uk+1 = uk − ρ∇J(uk).

Discrete version of continuous gradient systems

u′(τ) = −∇J(u(τ)).

Alternating descent: J = J(x , y)

uk+1/2 = uk − ρJx(uk); uk+1 = uk+1/2 − ρJy (uk).

What’s the continuous analog? Does it correspond to a class
of dynamical systems for which the stability is understood?

Enrique Zuazua Flow control in the presence of shocks: theory, numerics and applications



Intro Divide and conquer Computing: How far? Shape design in aeronautics The models in aeronautics Continuous versus discrete Shocks: A remedy OTHER APPLICATIONS Conclusions

Splitting+Alternating wins!
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Sol y sombra!
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Results obtained applying Engquist-Osher’s scheme and the one
based on the complete adjoint system

Splitting+Alternating method.
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After 30 iterations:
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Splitting+alternating is more efficient:

It is faster.

It does not increase the complexity.

Rather independent of the numerical scheme.

Extending these ideas and methods to more realistic
multi-dimensional problems is a work in progress and much
remains to be done.
Numerical schemes for PDE + shock detection + shape, shock
deformation + mesh adaptation,...
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Influence of shock wave location (Drag Minimization).
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Viscous models

Adjoint solutions for different viscous values of the viscosity
parameter: ν = 0.5 (upper left), ν = 0.1 (upper right) and

ν = 0.01 (lower left) and the exact adjoint solution (lower right).
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Related open problems.

Vanishing viscosity limit of the viscous adjoint system towards the
unexpected inviscid one.

−∂tp − νpxx − u∂xp = 0

lim
ν→0

????


−∂tp − u∂xp = 0, in Q− ∪ Q+,
[p]Σ = 0,
q(t) = p(ϕ(t), t), in t ∈ (0,T )
q′(t) = 0, in t ∈ (0,T )
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Similar problems arise in other contexts.

Zero dispersion limit? (J. Correia)

For instance, the limit of

−div(|∇u|p−2∇u) = f

as p →∞ has been intensively investigated (J. M. Urbano,...)
Consider the linearized ajoint system

−div(|∇u|p2∇p) = 1.

What’s its limit?
Is it the adjoint of the linearized ∞-Laplacian?
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Flux identification.

{
∂tu + ∂x(f (u)) = 0, in R× (0,T ),
u(x , 0) = u0(x), x ∈ R.

This time the control is the nonlinearity f . It is actually an inverse
problem.

F. James and M. Sepúlveda, Convergence results for the flux
identification in a scalar conservation law. SIAM J. Control
Optim. 37(3) (1999) 869-891.

C. Castro and E. Zuazua, Flux identification for 1-d scalar
conservation laws in the presence of shocks, preprint, 2009.
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Much remains to be done in the interfaces between PDE,
numerical analysis and optimal design:

Well-posedness of relevant models;
New approximation schemes for linearized and adjoint
equations;
Rigorous proof of convergence of new descent algorithms
(shock handeling, regularization,...)

An important effort has to be done to bring all this
mathematical understanding and theory to real applications:
Make all this to become algorithmic and insert it into the
relevant software to be used in (in particular) aeronautical
engineering.
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