Noticias Destacadas


Modificación sustancial del Plan de Estudios del Grado en Matemáticas, pendiente de aprobación por la Fundación Madri+d, basada en el acuerdo del Consejo de Gobierno de la UAM de 08/11/2023. Está previsto que la modificación se aplique, para todos los cursos del grado, en el año académico 2025-2026.

Preguntas frecuentes sobre la reforma del Grado en Matemáticas




 Eugenio Hernández


Académico de Honor de la RAC

En el pleno del 27 de noviembre de 2024, nuestro compañero Eugenio Hernández ha sido nombrado Académico de Honor de la RAC (Real Academia de Ciencias Exactas, Físicas y Naturales de España).

En el nombramiento se destacó "su dedicación y contribución al programa Estalmat desde sus inicios, no sólo con la coordinación en la Comunidad de Madrid, sino también a nivel nacional, con un trabajo constante, abnegado y siempre desinteresado".

Ampliar información


Logo IMC


Medallistas IMC 2024

Tres de nuestros alumnos, Pablo Soto Martín, Sergio Rodríguez Marín y Diego González Lozano, han participado en la 31º edición de la International Mathematics Competition for University Students (IMC) 2024, en Blagoevgrad (Bulgaria). Pablo ha obtenido un primer premio y Sergio y Diego mención honorífica.

Noticia en la UAM


 Eugenio Hernández


Medallas RSME 2024

Nuestro compañero Eugenio Hernández ha sido galardonado con una de las Medallas RSME 2024, junto a Alfredo Bermúdez de Castro y Clara Grima.

La sociedad matemática española expresa así su reconocimiento público a personas que han destacado por sus relevantes y continuas aportaciones  en los diferentes ámbitos de las matemáticas, como la educación, la investigación, la transferencia y la divulgación, entre otros.

Ampliar información


 FelixDelTeso


Premios a Favor de Jóvenes Investigadores

Nuestro compañero José Manuel Conde Alonso ha sido galardonado  en la modalidad de “Ciencias Matemáticas y Física Teórica” en los Premios a Favor de Jóvenes Investigadores de la UAM.

El objetivo principal de estos premios es el de reconocer y visibilizar el trabajo de los investigadores jóvenes de la UAM por su contribución al desarrollo científico, así como a su visualización nacional e internacional como centro investigador de referencia.

Ampliar información


 FelixDelTeso


Premio SeMA al mejor artículo del SeMA Journal de 2023

En esta edición el artículo galardonado ha sido "Finite difference schemes for the parabolic p-Laplace equation", SeMA Journal volume 80, pages 527-547 (2023) elaborado por los profesores Félix del Teso de la Universidad Autónoma de Madrid y Erik Lindgren del KTH-Royal Institute of Technology de Estocolmo.

Acceso al artículo galardonado


 


Plaza Jardín matemático Javier Cilleruelo

El pasado 15 de mayo tuvo lugar en su ciudad natal, Aranda de Duero, un homenaje a nuestro compañero Francisco Javier Cilleruelo Mateo, fallecido en la misma fecha de hace ocho años. En el acto se inauguró la plaza-jardín que llevará su nombre, entre dos centros educativos que disfrutó en su niñez.
Ver noticia, y otros enlaces, en la web de la Facultad.


 


Premio Ferran Sunyer i Balaguer 2024

Antonio Córdoba, catedrático emérito de nuestro departamento y miembro del ICMAT, ha sido el ganador del Premio Internacional de Investigación Matemática Ferran Sunyer i Balaguer 2024 por su monografía Suprematism in Harmonic Analysis. La monografía será publicada en la serie ‘Progress in Mathematics’ de la editorial Birkhäuser.

 

Mes anteior Día anterior Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
Jornada de primavera en EDPs. Viernes, 9 de abril de 2021, 10h- 11:25h

Jornada de primavera en EDPs. Viernes, 9 de abril de 2021, 10h- 11:25h


Enlace:   https://conectaha.csic.es/b/mar-e3k-scr-8wi

 

Primer ponente: Carlos Esteve (UAM), 10h-10:40h

Title: Inverse-design problem for Hamilton-Jacobi equations, backward-forward viscosity solutions and semiconcave envelopes.

Abstract: In this talk, we will consider the inverse problem of identifying the initial condition from a given solution at some positive time for evolutionary Hamilton-Jacobi equations. First of all, we will address the issue of describing the reachable set, i.e. the set of functions for which there exists at least a compatible initial condition. Secondly, we will discuss the possibility of having multiple initial conditions compatible with the given function, and we will give a way of characterizing all of them. Finally, for any given Lipschitz function, we will analyze the function obtained after solving the Hamilton-Jacobi equation backward and then forward in time. This function, which can be seen as a projection onto the reachable set, turns out to be the viscosity solution of an elliptic obstacle problem, and we refer to it as the semiconcave envelope.

Referencia:
Esteve C., Zuazua E.,The inverse problem for Hamilton-Jacobi equations and semiconcave envelopes, SIAM J. Math. Anal., Vol. 52, No. 6, pp. 5627–5657 (2020). https://doi.org/10.1137/20M1330130

Segundo Ponente: Jon Asier Bárcena (UAM) 10:45h- 11:25h


Title: Cost of null controllability for parabolic equations with vanishing viscosity

Abstract: The transport-diffusion equation with vanishing diffusivity describes the dynamics
of physical and biological phenomena in which the transport dynamics dominates the
diffusive dynamics. Since these systems are of parabolic nature, it is well-known that
they are null controllable. However, there are many open questions on the asymptotic
behaviour of the cost of null contrallability when the diffusion parameter vanishes.

In this talk we study the transport-diffusion equation with Neumann, Robin and mixed
boundary conditions. The main results concern the behaviour of the cost of the null
controllability when the diffusivity vanishes and the control acts in the interior. First, we
prove that if we almost have Dirichlet boundary conditions in the part of the boundary
in which the flux of the transport enters, the cost of the controllability decays for a time
T sufficiently large. Next, we show some examples of Neumann and mixed boundary
conditions in which for any time T>0 the cost explodes exponentially. Finally, we study
the cost of the problem with Neumann boundary conditions when the control is localized
in the whole domain.