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H(p, du(p))=1 p∈Ω
u(p)=g(p) p∈ ∂Ω
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Hamilton-Jacobi equations

Find H : Ω→R such that:

H(p, du(p))=1 p∈Ω
u(p)=g(p) p∈ ∂Ω

(1)

• H−1(1)∩Tp
∗Ω is convex for every p, and contains 0.

• Ω is a smooth and compact manifold with boundary, H and g are
smooth.

• The boundary data satisfies a compatibility condition (more about it
later)

|g(y)− g(z)|<d(y, z) (2)
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A geometrical interpretation

1. We can assume H is a norm in each vector space Tp
∗Ω (if necessary,

replace H with H̃ (p, w) = t, for the only t > 0 such that H(p,
1

t
w) = 1)

2. Define the dual norm ϕ in TpΩ

ϕp(v) = sup {〈v, α〉p : α∈Tp
∗Ω, H(p, α) = 1}

3. This is a Finsler metric, which induces a distance d in Ω

4. The metric is Riemannian iff H is quadratic in its second argument.
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Classical solution by characteristic curves

The HJ equations are first order PDEs, and thus there is a solution using
characteristic curves , defined only in a neighborhood of ∂Ω.

If x= γ(t) for a characteristic γ with γ(0) = y, then u(x) = t+ g(y)

The characteristic curves are geodesics of ϕ, whose initial condition at
y ∈ ∂Ω is the vector Vy satisfying:

ϕy(Vy) = 1 Vy |Ty(∂Ω)=dg Vy points inwards

In particular, if g is constant and ϕ Riemannian, V is perpendicular to ∂Ω.

For a vector V in a Finsler space, w= V̂ is its dual one-form, given by:

wj=
∂ϕ

∂V j
(p, V )

This is the usual definition of dual form if ϕ is a riemannian metric.
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Viscosity solution

A viscosity solution is a solution in a weak sense, defined in all Ω.

• The inspiration is too add a viscosity term to the HJ equations and make
ε→ 0:

H(p, du(p)) + ε△u(p) = 1

• The definition of viscosity solutions relies on test functions that touch u

from above (and below).

• There are other equivalent definitions (e.g., with semiconcave functions).

The solution obtained with characteristic curves coincides
with the viscosity solution where both are defined.
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Lax-Oleinik formula

Ths viscosity solution is given by a formula involving the Finsler distance:

u(p) = infq∈∂Ω {d(p, q) + g(q)}

Comments

• The compatibility condition |g(y)− g(z)|<d(y, z) is necessary and suf-
ficient for solutions to exist.

• If g=0, then u is the distance to the boundary.

• The solution is not C1 in all of Ω.
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The singular set

Characteristic curves from ∂Ω intersect each other if continued indefinitely.

The extra information required to get the viscosity solution from the classical
one is a criterion to decide which characteristic curve is used to compute the
value of u at a given point.

This extra information is the singular set of the solution u:

Let Sing be the closure of the singular set of u
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What do we know about the singular set of
the viscosity solution?

If g=0: u is the distance to the boundary, Sing is the cut locus.

And indeed, a solution with g � 0 in Ω is the restriction of the solution with
g=0 in a bigger set Γ⊃Ω:

H(p, dv(p))=1 p∈Γ
v(p)=0 p∈ ∂Γ

u=v |Ω
Sing(u)=Sing(v)
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Some special cases

If H depends only on du,
the characteristics are straight lines.
(this includes the eikonal equation,|∇u|=1)

If Ω is a simply connected plane region,
Sing is a tree.

If furthermore, Ω, H and g are all analytic,
then Sing is a finite tree.

If Ω is not planar, but Ω, H and g are analytic
then Sing is a stratified smooth manifold.
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Structure of the singular set

Singular sets (cut loci) are studied by PDE and geometry people

• The singular set is a deformation retract of Ω (obvious).

• It is the union of a (n− 1)-dimensional smooth manifold consisting of
points with two minimizing geodesics and a set of Hausdorff dimension
at most n− 2 (Hebda87, Itoh-Tanaka98, Barden-Le97, Mantegazza-Menucci03 for

the riemannian case).

• The singular set is stratified by the dimension of the subdifferential ∂u
(Alberti-Ambrosio-Cannarsa-Etcetera92-94).

• It has finite Hausdorff measure Hn−1 (Itoh-Tanaka00 for the riemannian
case, Li-Nirenberg05 for general case).

• If we add a generic perturbation to H or Ω, Sing becomes a stratified
smooth manifold (Buchner78).
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However, a cut locus can be pretty bad:

In Gluck-Singer78, the authors show

there are plenty of non-triangulable

cut loci.

Sing has the homotopy of Ω, but its topology may be non-trivial.

The cut locus of a ball in R
3 could be the house with two rooms :

This figure was taken from the book Algebraic Topology by Allen Hatcher
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Balanced split locus

Definition 1. We say S ⊂Ω splits Ω iff every point p∈Ω \S belongs to a
unique characteristic from ∂Ω contained in Ω \S.

If S splits Ω, and p∈Ω \S, let Rp be the speed of the characteristic from ∂Ω to p in Ω \S.
If p∈S, let Rp be the limit set of vectors Rq when q→ p.

Definition 2. S is a split locus iff S = {p∈S: #Rp> 2}

An arbitrary split locus and the singular set of u

Equivalently, S is a split locus iff S is closed, it splits Ω, and no closed S ′(S splits Ω.
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Definition 3. A split locus S is balanced iff the following holds:

Let pn be a sequence of points and Xn∈Rpn be a sequence of vectors. If pn→ p, Xn→X,
and the vector from pn to p converges to v, then:

X̂ (v)> Ẑ (v) ∀Z ∈Rp

In riemannian geometry , X̂ (v)=<X, v >=|v‖X |cos (∠(X, v)), so the balanced property
means that the angle of the incoming vector with the limit vector X is smaller than the angle
it makes with any other vector of Rp.
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Main result

Is the singular set of the viscosity solution the unique
balanced split locus?

Ω is simply connected → The singular set is the unique
and ∂Ω connected balanced split locus

Ω is simply connected, → We can add a different constant
∂Ω is not connected to g at each component of ∂Ω

and get different balanced split loci

General case → Balanced split loci are parametrized
by a neighborhood of 0 in Hn−1(Ω,R)
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Examples

In the ring between two concentric

spheres (g= 0 and euclidean metric)

there is a one dimensional

family of balanced split loci.

In a square with opposite sides identified

(a flat torus), there is a 2 dimensional family.

(∂T is a tiny circle around the central point)

We confirm dimH1(T) = 2
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Motivation: Cleave points

Let Φ be the geodesic flow in TΩ, with domain D(Φ). Define

V = {(t, z): z ∈ ∂Ω, t∈ [0,∞), (t, Vz)∈D(Φ)}

F :V →Ω F (t, z) = π(Φ(t, Vz))

(Vz is the initial speed of the characteristic starting at z)

• x= (t, z)∈V is regular if F is a local diffeomorphism at x

• x= (t, z)∈V is conjugate of order k if the rank of dxF is n− k

A point p∈S is a cleave point iff Rp= {X1,X2}, with Xi=dxi
F (

∂

∂t
), and both

x1 and x2 regular points of F .

At a cleave point p, the balanced condition implies :

TpS = ker (X1−X2)

Unique local solution to this differential equation through any point
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Proof of main theorem: more structure results

To prove our theorem we first had to adapt the existing structure results to
Finsler geometry and/or to balanced split locus.

Theorem 4. A balanced split locus S consists of cleave points (a smooth man-
ifold of dimension n− 1), and a set of Hausdorff dimension at most n− 2.

Proof. We extended previous results to Finsler manifolds. The proof is similar
to the existing one, using Morse-Sard-Federer. �

Theorem 5. A balanced split locus is stratified by dim (span(Rp )).

Proof. Similar to the proofs for semiconcave functions by Albano, Alberti,
Ambrosio, Cannarsa, Soner... �
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Let λk(z)> 0 be the value of t where the geodesic Φ(t, z) has its
k-th order conjugate point.

Let ρ(z) be the minimum t such that F (t, z)∈S.

Theorem 6. All λk: ∂Ω→R are Lipschitz functions.

Proof. This result is new for Finsler manifolds. Our proof is different from the
one in Itoh-Tanaka00, and uses the Malgrange preparation theorem. �

Theorem 7. ρ: ∂Ω→R is a Lipschitz function.

Proof. This was known for Finsler manifolds (Li-Nirenberg05), but we had to
repeat it for balanced split loci. Our proof is unrelated to theirs, and has more
in common with Itoh-Tanaka00. �

Corollary 8. Hn−1(S)<∞ for a balanced split locus S.
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We also proved the following:

Theorem 9. The set of points p∈Ω such that Rp contains a conjugate geodesic
of order >2 has Hausdorff dimension 6n− 3.

Proof. The set of conjugate points of order 2 is the union of two sets: Q2
1 and Q2

2.

The image of Q2
2 has Hausdorff dimension 6n− 3 (uses Morse-Sard-Federer),

and vectors in Q2
1 do not map to vectors in the sets Rp. �

Remark 10. In more standard terminology, this can be rephrased as “the set
of points that can be joined to ∂Ω with a minimizing geodesic conjugate of order
2 has Hausdorff dimension 6 n− 3”.

The restriction to minimizing geodesics is essential: the Hausdorff dimension
of F (Q2

1) may well be n− 2.
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Corollary 11. A balanced split locus S consists of:

• Cleave points (Rp= {X1, X2}, each Xi is regular)(a smooth non-connected hypersurface)

• Edge points (Rp consists of one conjugate point of order 1) (Hausdorff dimension n− 2)

• Degenerate cleave points (Rp={X1,X2}, Xi may be conjugate of order 1) (Hausdorff dimension
n− 2)

• Crossing points (Rp={X̂ :X ∈Rp} is contained in an affine 2D plane, Rp has regular and conjugate
points of order 1) ( rectifiable set of dimension n− 2)

• Remainder (Hausdorff dimension n− 3)

Comment: this is interesting to study brownian motion on manifolds.
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Proof of main theorem: a current

Each characteristic curve carries a value for u. A point in Ω \S gets only
one value, but a point in S gets a possible value from each geodesic from ∂Ω
contained in Ω \S.

Let Cj be the connected components of the set of cleave points . Each cleave
point gets one candidate value for u from either side: ul and ur

We define a current T of dimension n− 1:

T (φ) =
∑

j

(

∫

Cj ,l

φul+

∫

Cj ,r

φur

)

(3)

here Cj ,i means Cj with the orientation induced by a fixed orientation in Ω, and the vector
tangent to the geodesic coming from side i= l, r.

If T =0, then u can be defined unambiguously, and it’s continuous.
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The main step of the proof is to show ∂T =0

Once we have this, it is not hard to show that if two currents T1 and T2

obtained from two balanced split loci S1 and S2 represent the same homology
class in Hn−1(Ω), then T1= T2.

For example, if Ω is simply connected and ∂Ω connected, and T is closed,
then T =dP , where P (φ)=

∫

φf for a density f ∈Ln. But d P |Ω\S=T |Ω\S=0
implies f is locally constant outside S. Under our hypothesis, f is constant and
T =0.

For φ with support in a neighborhood of a cleave point:

∂T (φ) = T (dφ) =
∫

Cj ,r
dφ(ur−ul) =

∫

Cj,r
φd(ur−ul)

But dui=Xi for the incoming vector Xi (i= l, r).

By the balanced condition, TCj ⊂ ker (Xr −Xl ), so the integral is 0.

For φ with support in a neighborhood of a (generic) edge point:

Near a generic edge point q, S is a smooth hypersurface with boundary , with q a boundary

point. ur− ul is contant, and converges to zero as we approach the boundary.
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For φ in a neighborhood of a (generic) crossing point:

∂T (φ) = T (dφ)

=
∫

A1

dφu1+
∫

A2

dφu2+
∫

B1

dφu1+

+
∫

B3

dφu3+
∫

C2

dφu2+
∫

C3

dφu3

=
∫

A1

φd(u1− u2)+
∫

B3

φd(u3−u1)

+
∫

C2

φd(u2− u3)

+
∫

L
φ(u1− u1+u2− u2+ u3− u3)

= 0

Proof for general points:

Non-generic edge and crossing points can be quite more complicated than that, with a
countable amount of components Cj in any neighborhood.
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Thanks to the structure results, we only have to deal with non-conjugate geodesics

and geodesics of order 1.

Lemma 12. Let x∈V be non-conjugate or conjugate of order 1, and p=F (x).
There are neighborhoods Ox and Up=F (Ox) such that for any q ∈U and

(ti, zi)∈Ox (i=1, 2) such that Xi= d(ti,zi)F (
∂

∂t
)∈Rq, we have:

t1+ g(z1) = t2+ g(z2)

Thus, the value of u computed from all incoming directions in Ox is the same.

Lemma 13. Let p∈S be a degenerate cleave point, with Rp= {X1, X2} with
Xi= d(ti,zi)F (

∂

∂t
).

Let Oxi
be neighborhoods as in the above lemma. Let Ai be the set of q such

that Rq contains a vector dxF (
∂

∂t
) for a point x∈Oxi

. Then A1∩A2 is a Lipschitz

hypersurface. We can apply the argument for cleave points to show that ∂T =0
at degenerate cleave points.
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Lemma 14. Let p∈S be a general crossing point. There is a finite amount of open sets Oi

as in lemma 12 such that any X ∈Rp is of the form X = dxi
F (

∂

∂t
) for some xi∈Oi.

• All Ai∩Aj are Lipschitz hypersurfaces

• Let Σ=∪(Ai∩Aj∩Ak). In certain coordinates, the intersections of Σ with coordinate
planes {x1= a1,	 , xn−2= an−2} are Lipschitz trees

• At general crossing points, we also have ∂T =0.
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Extensions

• The set of points in aFinsler manifold Ω that can be joined to ∂Ω with
a minimizing geodesic conjugate of order k has Hausdorff dimension 6

n− k− 1.

• Other first order PDEs

− HJ-equations with dependence on u

− Non-convex H

− Sub-riemannian geometry?
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