Singular sets of Hamilton-Jacobi equations and cut loci

BY PABLO ANGULO ARDOY AND LUIS GUIJARRO
Universidad Autónoma de Madrid

$$\begin{array}{cc} H(p,du(p)){=}1 & p \in \Omega \\ u(p){=}g(p) & p \in \partial \Omega \end{array}$$

Hamilton-Jacobi equations

Find $H: \Omega \to \mathbb{R}$ such that:

$$H(p, du(p)) = 1 p \in \Omega$$

$$u(p) = g(p) p \in \partial\Omega$$
(1)

- $H^{-1}(1) \cap T_p^*\Omega$ is **convex** for every p, and contains 0.
- Ω is a smooth and **compact manifold with boundary**, H and g are smooth.
- The boundary data satisfies a **compatibility condition** (more about it later)

$$|g(y) - g(z)| < d(y, z) \tag{2}$$

A geometrical interpretation

- 1. We can assume H is a norm in each vector space $T_p^*\Omega$ (if necessary, replace H with $\tilde{H}(p,w)=t$, for the only t>0 such that $H(p,\frac{1}{t}w)=1$)
- 2. Define the dual norm φ in $T_p\Omega$

$$\varphi_p(v) = \sup \{ \langle v, \alpha \rangle_p : \alpha \in T_p^*\Omega, H(p, \alpha) = 1 \}$$

- 3. This is a **Finsler** metric, which induces a distance d in Ω
- 4. The metric is Riemannian iff H is quadratic in its second argument.

Classical solution by characteristic curves

The HJ equations are first order PDEs, and thus there is a solution using characteristic curves, defined only in a neighborhood of $\partial\Omega$.

If
$$x = \gamma(t)$$
 for a characteristic γ with $\gamma(0) = y$, then $u(x) = t + g(y)$

The characteristic curves are geodesics of φ , whose initial condition at $y \in \partial \Omega$ is the vector V_y satisfying:

$$\varphi_y(V_y) = 1$$
 $\widehat{V}_y|_{T_y(\partial\Omega)} = dg$ V_y points inwards

In particular, if g is constant and φ Riemannian, V is perpendicular to $\partial\Omega$.

For a vector V in a Finsler space, $w = \hat{V}$ is its **dual one-form**, given by:

$$w_j = \frac{\partial \varphi}{\partial V^j}(p, V)$$

This is the usual definition of dual form if φ is a riemannian metric.

Viscosity solution

A viscosity solution is a solution in a weak sense, defined in all Ω .

• The inspiration is too add a viscosity term to the HJ equations and make $\varepsilon \to 0$:

$$H(p, du(p)) + \varepsilon \Delta u(p) = 1$$

- The definition of viscosity solutions relies on test functions that $touch\ u$ from above (and below).
- There are other equivalent definitions (e.g., with *semiconcave* functions).

The solution obtained with characteristic curves coincides with the viscosity solution where both are defined.

Lax-Oleinik formula

The viscosity solution is given by a formula involving the Finsler distance:

$$u(p) = \inf_{q \in \partial\Omega} \left\{ d(p, q) + g(q) \right\}$$

Comments

- The compatibility condition |g(y) g(z)| < d(y, z) is necessary and sufficient for solutions to exist.
- If g = 0, then u is the distance to the boundary.
- The solution is not C^1 in all of Ω .

The singular set

Characteristic curves from $\partial\Omega$ intersect each other if continued indefinitely.

The extra information required to get the viscosity solution from the classical one is a criterion to decide which characteristic curve is used to compute the value of u at a given point.

This extra information is the singular set of the solution u:

Let Sing be the closure of the singular set of u

What do we know about the singular set of the viscosity solution?

If g = 0: u is the distance to the boundary, **Sing** is the **cut locus**.

And indeed, a solution with $g \neq 0$ in Ω is the *restriction* of the solution with g = 0 in a bigger set $\Gamma \supset \Omega$:

$$\begin{array}{ccc} H(p,dv(p)){=}1 & & p \in \Gamma \\ v(p){=}0 & & p \in \partial \Gamma \end{array}$$

$$u=v|_{\Omega}$$

$$Sing(u)=Sing(v)$$

Some special cases

If Ω is a simply connected plane region, Sing is a tree.

If furthermore, Ω , H and g are all analytic, then **Sing** is a *finite* tree.

If Ω is not planar, but Ω , H and g are analytic then **Sing** is a stratified smooth manifold.

Structure of the singular set

Singular sets (cut loci) are studied by PDE and geometry people

- The singular set is a deformation retract of Ω (obvious).
- It is the union of a (n-1)-dimensional smooth manifold consisting of points with two minimizing geodesics and a set of Hausdorff dimension at most n-2 (Hebda87, Itoh-Tanaka98, Barden-Le97, Mantegazza-Menucci03 for the riemannian case).
- The singular set is stratified by the dimension of the subdifferential ∂u (Alberti-Ambrosio-Cannarsa-Etcetera92-94).
- It has finite Hausdorff measure \mathcal{H}^{n-1} (Itoh-Tanaka00 for the riemannian case, Li-Nirenberg05 for general case).
- If we add a generic perturbation to H or Ω , **Sing** becomes a stratified smooth manifold (Buchner 78).

However, a cut locus can be pretty bad:

Sing has the homotopy of Ω , but its topology may be non-trivial. The cut locus of a ball in \mathbb{R}^3 could be the house with two rooms:

This figure was taken from the book Algebraic Topology by Allen Hatcher

Balanced split locus

Definition 1. We say $S \subset \Omega$ splits Ω iff every point $p \in \Omega \setminus S$ belongs to a unique characteristic from $\partial \Omega$ contained in $\Omega \setminus S$.

If S splits Ω , and $p \in \Omega \setminus S$, let \mathbf{R}_p be the speed of the characteristic from $\partial \Omega$ to p in $\Omega \setminus S$. If $p \in S$, let R_p be the limit set of vectors R_q when $q \to p$.

Definition 2. S is a split locus iff $S = \overline{\{p \in S : \#R_p \geqslant 2\}}$

An arbitrary split locus and the singular set of u

Equivalently, S is a **split locus** iff S is closed, it splits Ω , and no closed $S' \subseteq S$ splits Ω .

Definition 3. A split locus S is balanced iff the following holds:

Let p_n be a sequence of points and $X_n \in R_{p_n}$ be a sequence of vectors. If $p_n \to p$, $X_n \to X$, and the vector from p_n to p converges to v, then:

$$\hat{X}(v) \geqslant \hat{Z}(v) \quad \forall Z \in R_p$$

In riemannian geometry, $\hat{X}(v) = \langle X, v \rangle = |v||X|\cos(\angle(X,v))$, so the balanced property means that the angle of the incoming vector with the limit vector X is smaller than the angle it makes with any other vector of R_p .

Main result

Is the singular set of the viscosity solution the unique balanced split locus?

- and $\partial\Omega$ connected
- Ω is simply connected \rightarrow The singular set is the unique balanced split locus
- $\partial\Omega$ is **not** connected
- Ω is simply connected, \rightarrow We can add a different constant to g at each component of $\partial\Omega$ and get different balanced split loci
- General case

→ Balanced split loci are parametrized by a neighborhood of 0 in $H_{n-1}(\Omega, \mathbb{R})$

Examples

In the **ring** between two concentric spheres (g = 0 and euclidean metric) there is a one dimensional family of balanced split loci.

In a square with opposite sides identified (a **flat torus**), there is a 2 dimensional family. ($\partial \mathbb{T}$ is a tiny circle around the central point) We confirm dim $H_1(\mathbb{T}) = 2$

Motivation: Cleave points

Let Φ be the *geodesic flow* in $T\Omega$, with domain $D(\Phi)$. Define

$$V = \{(t, z) : z \in \partial\Omega, t \in [0, \infty), (t, V_z) \in D(\Phi)\}$$
$$F: V \to \Omega \qquad F(t, z) = \pi(\Phi(t, V_z))$$

 (V_z) is the initial speed of the characteristic starting at z

- $x = (t, z) \in V$ is **regular** if F is a local diffeomorphism at x
- $x = (t, z) \in V$ is **conjugate of order** k if the rank of $d_x F$ is n k

A point $p \in S$ is a **cleave point** iff $R_p = \{X_1, X_2\}$, with $X_i = d_{x_i} F(\frac{\partial}{\partial t})$, and both x_1 and x_2 regular points of F.

At a cleave point p, the balanced condition implies:

$$T_p S = \ker\left(\widehat{X}_1 - \widehat{X}_2\right)$$

Unique local solution to this differential equation through any point

Proof of main theorem: more structure results

To prove our theorem we first had to adapt the existing structure results to Finsler geometry and/or to balanced split locus.

Theorem 4. A balanced split locus S consists of cleave points (a smooth manifold of dimension n-1), and a set of Hausdorff dimension at most n-2.

Proof. We extended previous results to Finsler manifolds. The proof is similar to the existing one, using Morse-Sard-Federer.

Theorem 5. A balanced split locus is stratified by dim $(\operatorname{span}(\widehat{R_p}))$.

Proof. Similar to the proofs for semiconcave functions by Albano, Alberti, Ambrosio, Cannarsa, Soner...

Let $\lambda_k(z) > 0$ be the value of t where the geodesic $\Phi(t, z)$ has its k-th order conjugate point.

Let $\rho(z)$ be the minimum t such that $F(t,z) \in S$.

Theorem 6. All $\lambda_k: \partial \Omega \to \mathbb{R}$ are Lipschitz functions.

Proof. This result is new for Finsler manifolds. Our proof is different from the one in Itoh-Tanaka00, and uses the Malgrange preparation theorem.

Theorem 7. $\rho: \partial\Omega \to \mathbb{R}$ is a Lipschitz function.

Proof. This was known for Finsler manifolds (Li-Nirenberg05), but we had to repeat it for balanced split loci. Our proof is unrelated to theirs, and has more in common with Itoh-Tanaka00.

Corollary 8. $\mathcal{H}^{n-1}(S) < \infty$ for a balanced split locus S.

We also proved the following:

Theorem 9. The set of points $p \in \Omega$ such that R_p contains a conjugate geodesic of order ≥ 2 has Hausdorff dimension $\leq n-3$.

Proof. The set of conjugate points of order 2 is the union of two sets: Q_2^1 and Q_2^2 . The image of Q_2^2 has Hausdorff dimension $\leq n-3$ (uses Morse-Sard-Federer), and vectors in Q_2^1 do not map to vectors in the sets R_p .

Remark 10. In more standard terminology, this can be rephrased as "the set of points that can be joined to $\partial\Omega$ with a minimizing geodesic conjugate of order 2 has Hausdorff dimension $\leq n-3$ ".

The restriction to minimizing geodesics is essential: the Hausdorff dimension of $F(Q_2^1)$ may well be n-2.

Corollary 11. A balanced split locus S consists of:

- Cleave points $(R_p = \{X_1, X_2\}, each X_i \text{ is regular})(a \text{ smooth non-connected hypersurface})$
- $Edge\ points\ (R_p\ consists\ of\ one\ conjugate\ point\ of\ order\ 1)\ (Hausdorff\ dimension\ n-2)$
- **Degenerate cleave points** $(R_p = \{X_1, X_2\}, X_i \text{ may be conjugate of order } 1)$ (Hausdorff dimension n-2)
- Crossing points $(\widehat{R_p} = \{\widehat{X}: X \in R_p\}$ is contained in an affine 2D plane, R_p has regular and conjugate points of order 1) (rectifiable set of dimension n-2)
- Remainder (Hausdorff dimension n-3)

Comment: this is interesting to study brownian motion on manifolds.

Proof of main theorem: a current

Each characteristic curve carries a value for u. A point in $\Omega \setminus S$ gets only one value, but a point in S gets a possible value from each geodesic from $\partial \Omega$ contained in $\Omega \setminus S$.

Let C_j be the connected components of the set of cleave points. Each cleave point gets one candidate value for u from either side: u_l and u_r

We define a current T of dimension n-1:

$$T(\phi) = \sum_{j} \left(\int_{\mathcal{C}_{j,l}} \phi u_l + \int_{\mathcal{C}_{j,r}} \phi u_r \right) \tag{3}$$

here $C_{j,i}$ means C_j with the orientation induced by a fixed orientation in Ω , and the vector tangent to the geodesic coming from side i = l, r.

If T = 0, then u can be defined unambiguously, and it's continuous.

The main step of the proof is to show $\partial T = 0$

Once we have this, it is not hard to show that if two currents T_1 and T_2 obtained from two balanced split loci S_1 and S_2 represent the same homology class in $H_{n-1}(\Omega)$, then $T_1 = T_2$.

For example, if Ω is simply connected and $\partial\Omega$ connected, and T is closed, then T = dP, where $P(\phi) = \int \phi f$ for a density $f \in L^n$. But $dP|_{\Omega \setminus S} = T|_{\Omega \setminus S} = 0$ implies f is locally constant outside S. Under our hypothesis, f is constant and T = 0.

For ϕ with support in a neighborhood of a cleave point:

$$\partial T(\phi) = T(d\phi) = \int_{\mathcal{C}_{j,r}} d\phi(u_r - u_l) = \int_{\mathcal{C}_{j,r}} \phi d(u_r - u_l)$$

But $du_i = \widehat{X}_i$ for the incoming vector X_i (i = l, r).

By the balanced condition, $TC_i \subset \ker(\widehat{X_r} - \widehat{X_l})$, so the integral is 0.

For ϕ with support in a neighborhood of a (generic) edge point:

Near a generic edge point q, S is a smooth hypersurface with boundary, with q a boundary point. $u_r - u_l$ is contant, and converges to zero as we approach the boundary.

For ϕ in a neighborhood of a (generic) crossing point:

Proof for general points:

Non-generic edge and crossing points can be quite more complicated than that, with a countable amount of components C_j in any neighborhood.

Thanks to the structure results, we only have to deal with non-conjugate geodesics and geodesics of order 1.

Lemma 12. Let $x \in V$ be non-conjugate or conjugate of order 1, and p = F(x). There are neighborhoods O_x and $U_p = F(O_x)$ such that for any $q \in U$ and $(t_i, z_i) \in O_x$ (i = 1, 2) such that $X_i = d_{(t_i, z_i)} F(\frac{\partial}{\partial t}) \in R_q$, we have:

$$t_1 + g(z_1) = t_2 + g(z_2)$$

Thus, the value of u computed from all incoming directions in O_x is the same.

Lemma 13. Let $p \in S$ be a degenerate cleave point, with $R_p = \{X_1, X_2\}$ with $X_i = d_{(t_i, z_i)} F(\frac{\partial}{\partial t})$.

Let O_{x_i} be neighborhoods as in the above lemma. Let A_i be the set of q such that R_q contains a vector $d_x F(\frac{\partial}{\partial t})$ for a point $x \in O_{x_i}$. Then $A_1 \cap A_2$ is a Lipschitz hypersurface. We can apply the argument for cleave points to show that $\partial T = 0$ at degenerate cleave points.

Lemma 14. Let $p \in S$ be a general crossing point. There is a finite amount of open sets O_i as in lemma 12 such that any $X \in R_p$ is of the form $X = d_{x_i}F(\frac{\partial}{\partial t})$ for some $x_i \in O_i$.

- All $A_i \cap A_j$ are Lipschitz hypersurfaces
- Let $\Sigma = \cup (A_i \cap A_j \cap A_k)$. In certain coordinates, the intersections of Σ with coordinate planes $\{x_1 = a_1, ..., x_{n-2} = a_{n-2}\}$ are Lipschitz trees
- At general crossing points, we also have $\partial T = 0$.

Extensions

- The set of points in a Finsler manifold Ω that can be joined to $\partial \Omega$ with a minimizing geodesic conjugate of order k has Hausdorff dimension $\leq n-k-1$.
- Other first order PDEs
 - HJ-equations with dependence on u
 - Non-convex H
 - Sub-riemannian geometry?

References

Cut and singular loci up to codimension 3 http://arxiv.org/abs/0806.2229 (Annales de l'Institut Fourier)

Balanced split sets and Hamilton-Jacobi equations http://arxiv.org/abs/0807.2046 (Calculus of Variations and Partial Differential Equations, vol 40)