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Lattice points in the 3D torus

Introduction

• This talk is based on a joint work with my former student Dulcinea
Raboso.

Lattice point problems are very classic. They can be traced back to
the first half of the 19th century.
• C.F. Gauss (1837) circle problem, P.G.L. Dirichlet (1849) divisor prob-
lem.

The general situation is that we take a domain Ω ⊂ Rd, we scale it to
ΩR = RΩ with a large constant R, and we approximate the number of
integral points in ΩR by the volume |ΩR| = |Ω|Rd,

|ΩR ∩ Zd| = |Ω|Rd + O
(
Rα

)
.

Question: What is the best (minimal) value of α?

Example (circle problem). Ω =unit circle, d = 2.

#
{
(n, m) ∈ Z2 : n2 + m2 ≤ R2}

=
∑

n≤R2
r2(n) = πR2 + O

(
Rα2

)
.

• W. Sierpinski 1906, proved that α2 = 2/3, the so-called “trivial” expo-
nent, is valid. Actually, it is not trivial, let us say that it is easy once
one knows a harmonic analytic approach.
• G.H. Hardy 1915, conjectured that any α2 > 1/2 is valid. Still open.
• M.N. Huxley 2003, proved that α2 > 131/208 is valid (for “general”
regular convex plane regions).

1/2 2/3131/208
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In a century we have walked approximately 2 steps out of 9 towards the
conjecture. And the improvements are really small. For instance, the
last but one best known result was 46/73 and 46/73−131/208 < 1/3000.
This is a classic and hard problem in analytic number theory.

Usual approach

The basic idea is using Poisson summation formula

|ΩR ∩ Zd| =
∑

n⃗∈Zd

χΩR
(n⃗) =

formal

∑
n⃗∈Zd

χ̂ΩR
(n⃗)

The last series does not converges absolutely and even it is not expected
to converge at all for large d. Here the hat indicates the Fourier transform

f̂(ξ) =
∫
Rd

f(x⃗)e−2πiξ⃗·x⃗ dx⃗.

To avoid the convergence problems one notes that details of size δ require
frequencies at least comparable to δ−1.

The effect in the formula is like losing the volume of a band of width δ

|ΩR ∩ Zd| =approx.
∑

∥n⃗∥<δ−1
χ̂ΩR

(n⃗) + O
(
Rd−1δ

)
.

It is obvious that |χ̂ΩR
(⃗0)| = |Ω|Rd, then

|ΩR ∩ Zd| =approx. |Ω|Rd +
∑

0̸=∥n⃗∥<δ−1
χ̂ΩR

(n⃗) + O
(
Rd−1δ

)
.

If we take δ small the last term is small but then we need good methods
on exponential sums (perhpas too good) to deal with the middle term
that oscillates.
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Our result

The region that we consider is the 3D torus

T =
{
(x, y, z) ∈ R3 :

(
ρ′ −

√
x2 + y2

)2 + z2 ≤ ρ2
}

where 0 < ρ < ρ′ are fixed constants. The torus has two circles of points
with vanishing (Gaussian) curvature. It plays a role in the asymptotic.

We have proved

|TR ∩ Zd| = |T|R3 + C(R)R3/2 + O
(
Rα

)
for any α > 4/3,

where C(R) is a periodic function (say a constant in arithmetic progres-
sions).

|T|R3 = 2π2ρ2ρ′R3 = volume term, C(R)R3/2 = secondary main term.

This problem is easier than the circle problem because we have walked
approximately 2 steps out of 6 towards the conjecture that in this case
claims the result for any α > 1.
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Our method

Following the scheme mentioned before, we apply

|ΩR ∩ Zd| =approx. |Ω|Rd +
∑

0̸=∥n⃗∥<δ−1
χ̂ΩR

(n⃗) + O
(
Rd−1δ

)
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with Ω = T, d = 3 and δ = R−2/3, in this way O
(
Rd−1δ

)
= O

(
R4/3

)
.

Then the problem boils down to estimate
∑

0̸=∥n⃗∥<R2/3
χ̂TR

(n⃗).

A difference with respect to the classic scheme (for convex regions) is
that when we apply the stationary phase approximation to study χ̂TR

(n⃗),
the method collapses when n⃗ is the normal at a point of vanishing cur-
vature of TR. In our case, we have to separate the vertical vectors,

∑
0<n<R2/3

χ̂TR
(0, 0, n) → C(R)R3/2 + negligible terms

and we get the secondary main term.
For bounding the rest of the sum we elaborate a trick introduced

in 1963 for the sphere problem by the celebrated exponential sum esti-
mator and independently and simultaneously by one
of the most conspicuous Chinese number theorists

(Chen Jingrun).

The rough idea is that the torus has cylindrical symmetry and it is
preserved in the Fourier transform side, then we have to deal with oscil-
latory sums of the form

∑
m

∑
n

∑
l

f
(√

n2 + m2, l
)

When m is frozen, the derivative of
√

x2 + m2 is like 1. If we glue the
variables k = n2 + m2 we have something like

√
x that has a smaller

derivative
∑
m

∑
n

∑
l

f
(√

n2 + m2, l
)

=
∑
k

∑
l

r2(k)f
(√

k, l
)
.

In analytic terms this is, in principle, good because sums with less os-
cillation are easier to control. But we have to pay prize with a chaotic
arithmetic coefficient r2(k) that escapes to analytic methods.
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Although r2(k) is chaotic, it is close to be bounded, in fact its quadratic
mean grows as a logarithm. Then it is not a fatal loss to use Cauchy-
Schwarz inequality to get rid of it

∣∣∣∣ ∑
k≤K

∑
l

r2(k)f
(√

k, l
)∣∣∣∣2 ≤

approx.
K

∑
k≤K

∣∣∣∣ ∑
l

f
(√

k, l
)∣∣∣∣2.

Opening the square, and changing the order of summation we get
∑
l1

∑
l1

∑
k

f
(√

k, l1
)
f̄

(√
k, l2

)

and the inner sum is easier to study because of the control on the oscil-
lation.

The preprint “Lattice points in the 3-dimensional torus” by F. Chamizo
and D. Raboso will be posted on the arXiv soon.


