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1. Introduction. This is a joint work with D. Raboso (Van der Corput method and
optical illusions. Indag. Math., 26:723–735, 2015). Having in mind the nature of this
seminar, two assets of this humble work are that some questions in it remain open and
its origin is fully experimental. It stems from lecture notes I was writing for graduate
students about the van der Corput method and the stationary phase approximation
(employed in mathematical physics and analytic number theory). I got a theoretical
result about the oscillatory sum

N∑
n=1

e
(√

n
)

Notation: e(t) := e2πit (1)

and my computer contradicted my claim and, as usual, she is always right! In fact
the situation was weird because the computer provided a numerical confirmation and a
visual disproof.

2. Oscillatory sums and integrals. In general terms oscillatory sums are difficult
to estimate and oscillatory integrals are simple. For instance, optimal uniform bounds
for

∑N
n=1 e(t log n), mainly in the range t ≤ N1/2, would give fundamental advances

in our understanding of the Riemann ζ function with consequences in the spacing be-
tween primes. On the other hand computing even explicitly

∫ N
1
e(t log x) dx belongs to

undergraduate level.
Rougly speaking, van der Corput lemma and stationary phase approximation say

that there are two models for an oscillatory integral

I =

∫
e
(
f(x)

)
dx with f convex. (2)
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If the derivative is |f ′| > λ then I can be bounded by a linear model
∫
e(λx) dx getting

λ−1. On the other hand, if f ′(x0) = 0 this stationary point gives a fundamental con-
tribution and I can be approximated by a quadratic model

∫
e
(
1
2
λ(x − x0)

2
)
dx with

λ = f ′′(x0).

Is it possible to replace oscillatory sums by oscillatory integrals? No:

N∑
n=1

e(n) = N ↔
∫ N

1

e(x) dx = 0. (3)

Second opinion. Yes if you admit sums of integrals. Essentially

b∑
n=a

e
(
f(n)

)
=

∑
f ′(a)≤n≤f ′(b)

∫ b

a

e
(
f(t)− nt

)
dt+ admissible error. (4)

The same formula works for concave functions swapping f ′(a) and f ′(b).
If ∆f ′ is large the stationary phase approximation of the integral gives a longer

exponential sum to approximate (this is very bad) but even in this case the van der
Corput method and the Vinogradov method can squeeze valuable nontrivial information.

Idea of the proof of (4). With increasing approximation on L we have

L∑
n=−L

e(−nx) ≈

1 2 3

   bumps of area ≈  1
    and width like L−1

(5)

Then
b∑

n=a

e
(
f(n)

)
≈

L∑
n=−L

∫ b

a

e
(
f(x)− nx

)
dx for L large. (6)

If n�′ (b) or n� f ′(a) this is negligible by the first model.
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3. The theoretical-experimental paradox. Let us consider the oscillatory sum for
the phase function f(x) = α

√
x for α > 0 a fixed constant (originally α = 1),

Sα(N) =
N∑
n=1

e
(
α
√
n
)
. (7)

Separating a finite number of initial terms, we have |f ′| � 1 and the only integral
corresponding to n = 0 appears in (4). This means that after some special behavior for
N small, when N is much larger than α2 we get and approximation of the form

Sα(N) ≈ constant +

∫ N

C0

e
(
α
√
x
)
dx. (8)

The integral can be explicitly computed and implies that

Plot of the partial

sums Sα
≈ Off centered plot of Aα(x) =

√
x

πiα
e
(
α
√
x
)

at integer values.
(9)

When writing the lecture notes I checked numerically this for α = 1 and the computer
confirmed the very good approximation predicted by the theory. Clearly, Aα(x) defines
an Archimedean spiral of width 1/πα2 then I decided to include a figure for illustration
and a quite different paradoxical truth appeared. Instead of a spiral I saw a pattern
composed by vertical branches. The obvious question is the title of this talk: Where is
my spiral?

I played with the parameter α. Summing up, for α < 1 one gets the expected spiral,
for α2 ∈ Z+ one gets branches in two flavors depending on the parity of n and for
1 < α2 6∈ Z one gets in general patterns with appealing aesthetic structure which we do
not fully understand.
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4. A mathematical model. The previous plots constitute in some sense an optical
illusion or a kind of Moire effect because the individual numerical values fit perfectly the
predictions of theory. Our sight tends to connect close points in successive turnings to
form in the case α = 1 the vertical branches. Recall that the width of the spiral is 1/πα2

then it becomes natural that for α small the points are close only when they are in the
same turning and no confusion is possible. If instead of plotting individual points we
plot the segment joining them, the spiral is always there as the following figures show.
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My guess is that for the most of the people it is hard to believe that we can actually
get Archimedean spirals joining the points with segments.

With the notation introduced in (9), given two pointsAα(k1) andAα(k2) on the spiral
if they have angles differing by a quantity close to 2π they become close in successive
turnings. It requires 2πα

√
m2 ≈ 2πα

√
m1 + 2π. Consequently, given m1 the best

approximating m2 is

m2 = round
((√

m1 + α−1
)2)

= m1 +
⌊
2α−1

√
m1 + α−2 + 1/2

⌋
. (10)

It suggests that we observe branches
{
Aα(tk)

}
k

with tk given by the recurrence

tk+1 = tk +
⌊
2α−1

√
tk + α−2 + 1/2

⌋
. (11)

From this point on we quit the original exponential sum and we stick to the model
embodied in this recurrence.

The following figures illustrate the validity of this model for α = 1. For each t0 the
branch

{
Aα(tk)

}
k

is actually a geometrical branch in the figures. The model connects
each point with the closest point in the next turn then for a given t0 the branch always
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move away from the origin. The maximal branches for α = 1 correspond to t0 of the
form 4m2+m (1st quadrant), 4(m+2)2−5(m+2)+2 (2nd quadrant), 4(m+2)2−(m+1)
(3rd quadrant), 4m2 − 5m+ 2 (4th quadrant). This is an exercise!

t0 = 4 · 102 + 10 t0 = 4 · 122 − 5 · 12 + 2 t0 = 4 · 112 − 11

This also works for general values of α

α = 65/64, t0 = 7 α = 13/10, t0 = 7 α =
√
5, t0 = 7

The last example may seem strange because the branch is rather a band. This is due to
the fact that the closest point in the next turn can be not so close. Anyway, the branches
explain the structure in bands and a finer study of tk would give the inner structure of
each band.

5. Solving the recurrence. If we omit the integral part in (11) and we subtract 1/2
we get tk+1 = tk + 2α−1

√
tk +α−2 which has a general solution of the form α−2(k+ k0)

2.
Then we expect a quadratic growth. In fact it matches the parabolic branches observed
for α = 1. On the other hand the actual form of (11) gives in principle little hope for an
explicit solution. Curiously the case α2 ∈ Z+ can be fully solved. We came to it thanks
to the
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Experimental fact. For each α2 = n ∈ Z+ the second finite differences of tk
have period n′ with n′ = n/2 if n is even and n′ = n if n is odd.

Once this is mathematical proved one arrives to

Result. For each α2 = n ∈ Z+ the solution of (11) is of the form tk = fr(k)
where f0, f1, . . . , fn′ are certain quadratic polynomial and r is the residue of
k modulo n′.

Alternatively, one can write tk = f(k) with f a quadratic polynomial with coefficients
depending on r. It turn out that for each given t0 these coefficients can be completely
determined. The dependence on t0 is not very simple and it is connected to a certain
arithmetical representation

Fact. Given n ∈ Z+ any t0 ∈ Z≥0 admits a unique representation of the form
t0 = ni2 − i+ j with i ∈ Z+ and |j| < ni.

The proof is very easy. Essentially checking that the polynomial P (x, y) = nx2 − x+ y
satisfies P

(
x+ 1, 1− n(x+ 1)

)
− P (x, nx− 1) = 1.

For t0 we get a pair (i, j) and with some arithmetical operations involving the parity
of b(n+ 12)/8c and the size of j we get another integral pair (c0, c1). Instead of writing
the actual formula (which is rather ugly) I will just mention an example: For n and
b(n + 12)/8c even and j = 0 it is deduce c0 = 2i and c1 = n/2 − bn/4c. Taking as
granted that we know the formula for c0 and c1 in terms of t0 then we get a perfectly
explicit solution of (11).

More precise result. If α2 = n ∈ Z+ with n > 2 even, the solution of (11) for
k ≥ 1 is

tk =
(k + c1)

2 − (r + 1)2

n
+
r + 1− k − c1

2
+ c0k + t0 (12)

where r is the remainder of k + c1 − 1 when divided by n.

There is something similar but slightly more complicated for the odd case.
The cases n = 1 and n = 2 are somewhat special and the theory collapses to produce

extremely simple solutions given respectively

tk = k2 + k
⌊
2
√
t0 +

1

2

⌋
+ t0 and tk =

k(k + 1)

2
+ k
⌊
2
√
t0
⌋

+ t0. (13)

The geometric interpretation is that in these cases we do not observe subpatterns due
to the residues modulo n′.
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6. Closing remarks and questions. For simplification I have not given the full
experimental fact observed when computing values of tk

Enhanced experimental fact. For each α2 = n ∈ Z+ the second finite differ-
ences of tk have period n′ with n′ = n/2 if n is even and n′ = n if n is odd.
And on each block of length n they are zero with exactly two exceptions.

In some sense, c0 and c1 embody the information about these exceptions. Our proof
gives these constants but it is not very pretty, even for us! Perhaps this is unavoidable
because the formulas for c0 and c1 are complicate. If we forget about the constants, a
natural question is

Challenge. Find a short elegant proof of the experimental fact.

This is a warming up for the real natural problem here: The extension to every value
of α. When α2 6∈ Z+, the second finite differences of tk seems to be quasiperiodic.

Dream. It is possible to give a general explicit solution of the recurrence (11)
in terms of continued fractions associated to α.

Feel free to disagree, different persons have different dreams. The good ones are
those that become true.
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