Large Sieve

What is it?

Basic inequality: $x_1, x_2, \ldots \in \mathbb{T}, |x_{\nu} - x_{\mu}| > \delta$

$$\sum_{\nu} \left| \sum_{n \le N} a_n e(nx_{\nu}) \right|^2 \le (N + \delta^{-1}) \sum |a_n|^2.$$

H. A. analog: Sum of Sobolev's inequalities.

What for?

Take control of some Fourier series with rough coefficients appearing in Number Theory.

Example: $S(x) = \sum_{p \leq N} e^{2\pi i p x}$ small for $x \notin \mathbb{Q}$ (p prime) \Rightarrow Every large enough odd number is a sum of three primes (Vinogradov).

$$S(x) \longrightarrow \sum_{n \le N} \sum_{m \le N/n} \mu(n) e^{2\pi i m n x}.$$

<u>H. A. analog</u>: Bilinear forms estimates.

Why does it work?

If the points x_{ν} are spaced the vectors $\vec{v}_{\nu} = (e(x_{\nu}), e(2x_{\nu}), \dots, e(Nx_{\nu}))$ are more or less orthogonal.

Quasi-orthogonality \Rightarrow Cancellation <u>H. A. analog</u>: Cotlar's lemma.

What is new?

Harmonic analysis on the upper half plane (spectral theory of automorphic forms).

 $\mathbb{H} = \text{upper half plane} \quad \Gamma = \text{Fuchsian group}$ $d\mu = y^{-2} dx \, dy \qquad \Delta = y^2 (\partial^2 / \partial x^2 + \partial^2 / \partial y^2)$

Discrete Continuous $-\Delta u_n = \lambda_n u_n, \ u_n \in L^2; \quad -\Delta E = \lambda E, \ E \notin L^2$ Spectral theorem in $\Gamma \setminus \mathbb{H}$: $f(z) = \sum a_n u_n(z)$ +continuous spectrum. <u>Thm</u>: For $\Gamma \setminus \mathbb{H}$, $d(z_{\nu}, z_{\mu}) > \delta$ implies

$$\sum_{\nu} \left| \sum_{\sqrt{\lambda_n} \leq \Lambda} a_n u_n(z_{\nu}) + \dots \right|^2 \leq K(\Lambda^2 + \delta^{-2}) \|\mathbf{a}\|^2.$$

(Ext.) For a compact Riemannian D-manifold, $d(x_{\nu}, x_{\mu}) > \delta$ implies

$$\sum_{\nu} \left| \sum_{\sqrt{\lambda_n} \leq \Lambda} a_n \phi_n(x_{\nu}) \right|^2 \leq K(\Lambda^D + \delta^{-D}) \sum_{\sqrt{\lambda_n} \leq \Lambda} |a_n|^2.$$

Proof \rightarrow Study smoothed quasi-orthogonality $\sum_{n} e^{-\lambda_n/\Lambda^2} u_n(z_\nu) u_n(z_\mu) + \dots$

<u>H. A. analog</u>: Heat kernel estimates.

What follows?

* For the most of the large circles in \mathbb{H} , it holds

$$\#\{\Gamma z \in \operatorname{circle}\} = A + O(A^{1/2 + \epsilon})$$

where A is the area of the circle.

* The number of integral solutions of $x^2 + y^2 - z^2 - t^2 = 1$ with $x^2 + y^2 \leq N$ is approximately 8N and the standard deviation of this circle is $O(N^{1/2+\epsilon})$.

* Wave equation in a compact Riemannian manifold of dim = D with frequencies cut-off up to δ^{-1} . If #{test particles} $\delta^D > K$ then the energy average over test particles is bounded by total energy.

