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To be or not to be
. . . differentiable
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According to Weierstrass, Riemann claimed that f is nowhere
differentiable

f (x) =
∞∑

n=1

sin(πn2x)
n2

Quick conclusion: Riemann and Weierstrass did not have a computer.
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Two fake proofs

Wrong proof, wrong answer

f ′(x) = π
∑

cos(πn2x)
does not converge for any
real number x (?)⇒ f is
nowhere differentiable and
Riemann’s alleged claim is
right.

Wrong proof, right answer

f ′(x) is the derivative of
limy→0

∑
e−πn2y sin(πn2x)

n2 =
π limy→0

1
2
(
ϑ(x + iy) − 1

)
and it exists and takes the
value −π/2 exactly at the
cusps x = a/b, 2 - a, b.

ϑ(z) =
∑

n∈Z e( 1
2n2z) (Jacobi) Notation: e(x) = e2πix
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A couple of unexpected connections

Riemann’s example appears in the asymptotics of the sum of
the Jacobi symbol

∑
2-n<X

∑
2-m<Y

( n
m
)

.

Conrey, J. B.; Farmer, D. W.; Soundararajan, K. Transition mean values of real characters. J. Number Theory 82

(2000), no. 1, 109–120.

Riemann’s example appears in the evolution of a polygonal
vortex under a fluid dynamic model.
de la Hoz, F.; Vega, L. Vortex filament equation for a regular polygon. Nonlinearity 27 (2014), no. 12, 3031–3057.

Square frequencies are linked to Schrödinger equation and it opens the
opportunity for several applications, for instance the quantum Talbot effect.
Berry, M. V.; Klein, S. Integer, fractional and fractal Talbot effects. J. Modern Opt. 43 (1996), no. 10,

2139–2164, (Vega, L.; Eceizabbarrena, D. Work in progress)
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Gaps: Good or bad?
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A couple of unexpected connections

Riemann’s example is only differentiable in a meager set and
Weierstrass constructed his fractal-like functions with lacunary
Fourier series. Do gaps imply chaos?

Some theorems suggests that lacunary frequencies have a smoothing effect.
Namely for f ∼

∑
e(njx) with nj+1/nj > c > 1 it is known:

If f is bounded then its Fourier series is absolutely convergent.

If f is integrable then it belongs to L2. In particular
∑
|cn|2 <∞.

These results are blatantly false if lacunarity is dropped.
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Conjecture (Hardy, Littlewood, Rudin, Córdoba): The “kernel”∑
e(n2x) is a multiplier L2 −→ Lp for p < 4 i.e., L2 Fourier series

with squares frequencies are automatically in Lp for p < 4.

It implies Rudin’s conjecture: An arithmetic progression of length
N may contain at most O

(
N1/2+ε) squares.

Uncertainty principle: To examine details at level ε we need a frequency range
of at least ε−1. [x , p] = i~, 4π‖xf ‖‖ξf̂ ‖ ≥ ‖f ‖2

The gaps give us an opportunity in our everlasting fight against
uncertainty principle. On the other hand the possible resonances
are sometimes related to deep arithmetical problems.

Intricate theory of exponential sums estimation in number theory.
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How chaotic is your function?
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Theorem (Jaffard, 1996). Riemann’s example and its fractional
derivatives are multifractals.

Theorem (Ch. Ubis, 2014). The functions
∑

n−αe
(
P(n)

)
with

P ∈ Z[x ], deg P > 2 are also multifractal in some ranges.

The higher gaps for deg P > 2 do not payback because one loses self-similarity.
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Visiting a Riemann’s relative
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We consider a relative of Riemann’s example at the edge of
convergence

F (x) =
∞∑

n=1

e(n2x)
n .

Remarks

It clearly diverges in a dense set of rationals.
It nevertheless defines a BMO function.

Our basic naive question

How much does it differ from being a bounded function?
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BMO, an interlude
(when mean oscillation is not mean)
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The space of Bounded Mean Oscillation was introduced by John
and Nirenberg in 1961 and readily applied by Moser to get the
regularity of some elliptic PDEs. Its relevance was boosted by C.
Fefferman duality theorem (H1)∗ = BMO.

f ∈ BMO means ‖f ‖I = 1
|I|

∫
I
|f − fI | < C

uniformly on intervals I, where fI is the average of f .

Comment. f : [a, b] −→ R bounded ⇒ f ∈ BMO.

(Counter)example. log x as a function (0, 1] −→ R belongs to BMO.
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From the point of view of harmonic analysis is a substitute for
L∞ well-behaved under interpolation and duality.
By John-Nirenberg inequality, roughly speaking, BMO is like
L∞ allowing at most logarithmic singularities.

Theorem. (Ch., Córdoba, Ubis 2019) If νn+1/νn ≥ 1 + δmax(|an|, |an+1|)

lim sup
|I|→0

∥∥∥ ∞∑
n=1

ane(νnx)
∥∥∥

I
≤ 3
δ

3√12π.

∞∑
n=1

e(nkx)
n ∈ BMO with some control on its “BMO norm”.

Paradox: Bigger gaps → closer to vanishing mean oscillation.
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Converging to something
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Our results (joint with Córdoba and Ubis 2019)

F (x) =
∞∑

n=1

e(n2x)
n

Rough formulation

Theorem 1. Full characterization of the convergence set of the
series.

Seuret, Ubis 2017 (Ann. Inst. Fourier 67, no. 5, 2237–2264) proved the
convergence and the divergence for classes of irrational values.

Theorem 2. Precise estimation of the oscillation in small intervals.

John, Nirenberg 1961 (Comm. Pure Appl. Math. 14 415–426) proved that
1
|I|

∣∣{x ∈ I : |f (x)− fI | > λ}
∣∣ is O

(
e−Cλ) for BMO functions.
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Our results (joint with Córdoba and Ubis 2019)

Exact formulation

Theorem 1. For x irrational, the series converges if and only if
1
2

∞∑
j=1

θpj/qj√qj
log qj+1

qj
does.

In fact the difference between F and this sum is bounded in the
convergence set. Here pj/qj are the convergents of the continued
fraction of x and θpj/qj are the normalized Gauss sums.

θpj/qj ∈ {0,±1,±i ,±1± i}. Then
θpj /qj√qj

has an exponential decay.

Corollary (Seuret, Ubis). If qj+1 6= o
(
qj exp

(
q1/2

j
))

for 2 ∦ qj , it
diverges.
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Our results (joint with Córdoba and Ubis 2019)

Exact formulation

Theorem 2. There are constants c1, c2,C > 0 such that

C−1e−c2λ
√q ≤ 1

|I|
∣∣{x ∈ I : |F (x)− FI | > λ}

∣∣ ≤ Ce−c1λ
√q

for I the interval of real numbers with continued fraction extending
that of p/q. In fact c1 = c2 if 4 | q.

|I| is comparable to and interval centered at p/q of length q−2.

The upper bound still holds for any subinterval of I.

The oscillation depends on the Diophantine approximation, being
exponentially small on the denominator in the Farey dissection.
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A modular forms as Poisson
summation in disguise
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“Poisson summation for number theory is what a
car is for people in modern communities –it transports
things to other places and it takes you back home when
applied next time– one cannot live without it.”

H. Iwaniec, E. Kowalski
Analytic Number Theory
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Some avatars of the invariance of Gaussians under the Fourier transform:∑
n∈Z

e−πtn2 = 1√
t
∑
n∈Z

e−πn2/t

θ(z) is a half weight modular form under the theta group

∑′

n≤N
e
(1

2n2x
)

= e(1/4)√
x

∑′

n≤Nx
e
(
− n2

2x
)

+ O
( 1√

x
)

The last one establishes the connection with continued fractions.
Fiedler, Jurkat, Körner. Acta Arith. 32 (1977), 129–146.

Hardy, Littlewood. Acta Math. 37:155–191, 193–239, 1914.
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Poisson summation in arithmetic progressions proves

∑
q≤n<Q

e(n2x) =
θp/q√q

∫ Q

q
e(ht2) dt + O(q1/2)

with p/q, P/Q are consecutive convergents of x and h = x − p/q.

Replacing Q by N < Q, applying partial summation

∑
q≤n<Q

e(n2x)
n2 =

θp/q√q

∫ Q

q

e(ht2)
t dt + O(q−1/2).

Outcome:
Characterization of the convergence.

Just take q = qj , Q = qj+1, estimate the integral and sum in j.
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The average FI gives a blur version of F at scale q−2 = q−2
j0 , the

size of I.

The uncertainty principle suggests that
∑

n2<q2 e(n2x)/n2 contains
alike information.

If this is so, the oscillation is represented by
∑

n>q e(n2x)/n2.

Outcome:

F (x)− FI = 1
2
∑
j≥j0

θpj/qj√qj
log qj+1

qj
+ O

( 1
√qj0

)
I = Ipj0/qj0

.
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Continued and dis-
continued fractions
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Two metric results after Khinchin

Although the partial quotients in the continued fraction are not exactly
independent, they behave like that.

I = Ip/q, p
q = pj0

qj0

So we can control the measure when we specify a partial quotient. . .

Lemma. The measure of the x ∈ I with a partial quotient aj = k
for some fixed j > j0 is comparable to k−2|I|

Or even a tail sequence. . .

Lemma.
If An ≥ 1 and S =

∑
A−1

n <∞ then

ec1S ≤ 1
|I|
∣∣{x ∈ I : aj0+n(x) ≤ An for n ∈ Z+}

∣∣ ≤ ec2S .
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Measuring vanishing sets
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Recall

F (x)− FI = 1
2
∑
j≥j0

θpj/qj√qj
log qj+1

qj
+ O

( 1
√q

)
I = Ipj0/qj0

.

We have qj+1/qj = aj+1 + O(1) and according to the metric
theory, the most of the x ∈ I have not outrageously large partial
quotients {aj0+n}n≥2.

Note that 1/√qj shows, at least, a geometric decay
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Commonly

F (x)− FI ≈
1
2
θpj0/qj0√q log aj0+1

and the approximation improves when aj0+1 grows because it
becomes more dominant.

Outcome:
Large values of |F (x)− FI | require exponentially large partial
quotients and this happens only in an exponentially small
proportion of the interval.

Technical point: If θpj0/qj0
vanishes, the expected dominant term is shifted.
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Je vous remercie
de votre attention!
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