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I said [to S.S. Chern] I found it amazing that gauge theory are
exactly connections on fibre bundles, which the mathematicians
developed without reference to the physical world. I added
“this is both thrilling and puzzling, since you mathematicians
dreamed up these concepts out of nowhere:” He immediately
protested: “No, no. These concepts were not dreamed up.
They were natural and real.” C.N. Yang in [80].
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Preface

Each researcher is under continued training, learning from books, papers and
colleagues. In principle, any of them should be avid for being taught, but I have
learned the hard way why official education is addressed to young people. This
work is the culmination of a exhausting year under not very supportive personal
circumstances.

Various things, nevertheless, have been on my side. One of them is that by sheer
chance, I have worked on a problem connecting theoretical physics and my previous
research topic. I thank my advisor, Antonio González-Arroyo, for his enthusiasm
sharing and proposing the problem, and for his patience and work.

Except for the section devoted to the number theoretical approach, the rest of
the main contents can be found in the specialized literature. In particular, the 2 + 1
Yang-Mills model studied here comes from [29] and [30]. If all goes as planned, we
will compose a research paper [9] with the new approach. In fact the initial plan was
to proceed in the other direction but my poor performance and slowness prevented
it. I want to end this short preface remembering Javier Cilleruelo, who unexpectedly
passed away recently. I am sure that he would have enjoyed to know that the kind
of problems he loved may appear in theoretical physics.
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Chapter 1

Basic ideas about gauge theories

1.1 Elementary examples and concepts

A motivating example

Let us start with a very illustrative and simple example. It is taken from [3] (in
an abbreviated form) and, as far as we know, it is not a historical example, but
looking into retrospective it has some connections with the ideas introduced in 1926
by V. Fock [42] shortly after E. Schrödinger stated his equation. We are going to use
the kind of first quantization arguments that a pioneer of quantum mechanics could
have employed at that time.

After the classical contribution of J.C. Maxwell and H. Lorentz, it was known
that the Lorentz force q( ~E+~v× ~B) on a charge q derives from a classical Hamiltonian

(1.1) H =
1

2m

(
~p− q ~A

)2
+ qϕ

where (Aα) = (ϕ,− ~A) is what we call today the 4-potential. We have

(1.2) ~E = −∇ϕ− ∂ ~A

∂t
and ~B = ∇× ~A.

This equations, that embody two of the Maxwell equations , the Lorentz force and
consequently the dynamics of the system, are invariant by the gauge transformation

(1.3) ϕ 7−→ ϕ+
∂χ

∂t
, ~A 7−→ ~A−∇χ.

On the other hand, the (first) quantization of this electromagnetic problem via
Schrödinger’s equation is (in natural units ~ = c = 1)

(1.4)
( 1

2m

(
− i∇− q ~A

)2
+ qϕ

)
Ψ = i

∂Ψ

∂t
.

1



2 CHAPTER 1. BASIC IDEAS ABOUT GAUGE THEORIES

There is something strange in this equation: It seems that the transformations (1.3)
change it substantially and then the choice of different gauges could give, in principle,
different physical conclusions. But χ in (1.3) is a mathematical artifact related to

the non uniqueness of the solution of the partial differential equations ∇ · ~F = f0

and ∇× ~F = F0, and there is not a clear rule to privilege a particular solution. At
least in the classic setting the value of the 4-potential at a point has not physical
significance. At a fixed point, we can only measure the electric and magnetic fields
~E and ~B.

It turns out that the gauge change (1.3) that apparently modifies completely
(1.4) does not act dramatically on the solutions. It can be checked that if Ψ is a

solution of (1.4) for certain (ϕ,− ~A) then e−iqχΨ is a solution after the gauge change
(1.3) (shortly we shall see the calculation in detail in another example). With this
information at hand, one can argue that the “probability density” |Ψ|2 is invariant
under phase changes and take it as an explanation to save the gauge invariance
coming from the well-settled Maxwell equations. But this explanation has a flaw, if
we allow a possibly time dependent phase in the wave function, then the probability
interpretation and its conservation, is in danger. Note that Ψ∗∇Ψ − Ψ∇Ψ∗ is no
longer a current, as in the case of a free particle. The important point to be noted
here is that (1.4) becomes the free particle Schrödinger’s equation if

(1.5) ∇− iq ~A 7−→ ∇ and
∂

∂t
+ iqχ 7−→ ∂

∂t
.

This sounds relativistic and it is noteworthy in our context in which relativity was
not explicitly considered. The important point is that it gives a big clue about the
right conserved current and, in general, an answer about why different gauges lead
to the same physics: The operator

(1.6) D =
( ∂
∂t
.+ iqϕ,∇− iq ~A

)
is in some sense gauge invariant, meaning that if D′ is the operator in other gauge,
and Ψ′ = e−iqχΨ is the solution of (1.4) in that gauge, then

(1.7) D′Ψ′ = e−iqχDΨ.

Let us insist on the same point reviewing with care the computations in a rel-
ativistic example to avoid any paradox coming from the combination of Newton’s
dynamics and electromagnetism. Imagine that, as Schrödinger tried in first place
[26], we want to study the quantum relativistic corrections for a charged particle.
The natural quantization for the uncharged free particle in natural units (c = ~ = 1)
is

(1.8) E2 + ~p2 = m2, E ↔ i
∂

∂t
, ~p↔ −i∇,
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that leads to the Klein-Gordon equation

(1.9) ∂α∂
αΨ +m2Ψ = 0.

If we now switch the electromagnetic field on, one should add the corresponding
potential energy to the 4-moment, i.e. one should replace i∂α by i∂α + qAα. Let us
write q = −e having in mind the electron. Consequently, (1.9) becomes

(1.10)
(
∂α + ieAα

)(
∂α + ieAα

)
Ψ +m2Ψ = 0.

Again, if Ψ solves (1.10) then e−ieχ(x)Ψ solves (1.10) after the gauge change (1.3).
The key point is

(1.11)

{(
∂α + ie(Aα + ∂αχ)

)(
e−ieχ(x)Ψ

)
= e−ieχ(x)

(
∂α + ieAα

)
Ψ,(

∂α + ie(Aα + ∂αχ)
)(
e−ieχ(x)Ψ

)
= e−ieχ(x)

(
∂α + ieAα

)
Ψ.

There is nothing deep in these relations, we simply compensate the extra term in
the derivative of a product using

(
∂α − ∂αf

)
ef = 0, the defining property of the

exponential.
We can express the situation in a very succinct way introducing the covariant

derivative D and the gauge transformation G

(1.12) Dµ = ∂µ + ieAµ and GΨ = e−ieχ(x)Ψ.

Then our observation is that under Ψ 7−→ GΨ, we have

(1.13) DµΨ 7−→ GDµΨ and AµΨ 7−→ GAµG
−1 + ie−1(∂µG)G−1.

Of course, the second equation is just verbosity meaning simply Aµ 7→ Aµ + ∂µχ.

Extending these ideas to the right context of spin 1/2 particles (to include the
electron) leads to write the QED Lagrangian as

(1.14) L = Ψ̄(i /D −m)Ψ− 1

4
FµνF

µν with /D = γµDµ.

It is clearly invariant by (1.13). Note that the interaction Lagrangian −jµAµ =
−eΨ̄γµΨAµ is obtained by minimal coupling changing usual derivatives ∂µ by covari-
ant derivatives Dµ. In other words, from the Dirac equation for the free particle1.

1In the case of the electromagnetic field, this is not so spectacular. In the famous paper [16]
in which P.A.M. Dirac introduces his equation, we can read “we adopt the usual procedure of
substituting p0 + e/cA0 for p0 and p + e/cA for p in the Hamiltonian for no field.”



4 CHAPTER 1. BASIC IDEAS ABOUT GAUGE THEORIES

A non-Abelian example

Let us consider now an example with less physical significance but closer to the ideas
appearing in the Standard Model.

Say that we have N real scalar fields φ1, φ2, . . .φN behaving as harmonic oscil-
lators with equal mass and no interaction. The Lagrangian is

(1.15) L =
1

2

N∑
k=1

∂µφk∂
µφk −

1

2
m2

N∑
k=1

φ2
k.

We can define artificially a column vector field Φ in RN having φk as its k-th coor-
dinate, and write

(1.16) L =
1

2
(∂µΦ)†(∂µΦ)− 1

2
m2Φ†Φ

(of course, the dagger can be changed by transposition).
There is no a priori physical reason to consider the different fields as components

of the same object. In the same way, we could say that neutrinos and electrons are
different animals and coupling both together in the Standard Model Lagrangian [74]
is, in principle, an economic usage of the mathematical notation like in (1.16).

The group SO(N) acts naturally on Φ preserving (1.16). In fact, O(N) also leaves
it invariant, but by technical reasons, we only consider the connected component
containing the identity. Each transformation of SO(N) mixes the real fields φk
together in the same way as SU(2) mixes neutrinos and electrons. Physics shows up
when we assume a kind of gauge principle, claiming a minimal coupling rule. Shortly
we shall see it in a broader and more formal context. Now we are going to tackle the
problem through our example.

In the electrodynamic example, the formalism allows us to interpret the inter-
acting field as a term to be added to the derivative in such a way that the result
behaves well under the symmetry transformations, even if they vary from a point to
another. Then we consider as in (1.12)

(1.17) Dµ = ∂µ + igAµ and GΨ = S(x)Ψ.

where S(x) ∈ SO(N) for each x. Now Aµ, the gauge field is at each point an N ×N
matrix, and g is just a constant introduced to recall the physical situations (g = e
in the previous case).

If we wish the covariant derivative Dµ to be really covariant, DµS(x) = S(x)Dµ,
then Aµ must transform in the particular way stated in (1.13) with e = g. Both
formulas in (1.13) become equivalent. To keep a complete analogy one would like to
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write S(x) as an exponential GΨ = e−igX(x)Ψ where X(x) is a purely imaginary anti-
symmetric matrix to assure e−igX(x) ∈ SO(N). We can identify then the exponents
with elements of the Lie algebra so(N). This simply reflects that derivatives in a Lie
group give rise to elements in the Lie algebra. Expanding this comment, since ∂µ and
Aµ stand with the same role in (1.17), it is natural to impose Aµ ∈ so(N). Hence we
could express each Aµ as a linear combination of the N(N − 1)/2 elements of a fixed
basis of so(N). On the other hand, µ varies in {0, 1, 2, 3}, then we can think the
gauge field as a superposition of N(N − 1)/2 vector fields (with matrix coefficients).
In the Standard Model, the strong force corresponds to the group SU(3) (there are
three colors), then there are dim su(3) = 32−1 basic gauge (gluon) fields represented
by the Gell-Mann matrices.

Under the “spell” [69] of the gauge principle, we can guess that in our example
the Lagrangian including the interaction term is

(1.18) L =
1

2
(DµΦ)†(DµΦ)− 1

2
m2Φ†Φ.

Note that, unwrapping the notation, it gives an interaction Lagrangian that is not
trivial to guess

(1.19) Lint =
1

2
ig(AµΦ)†∂µΦ +

1

2
ig(∂µΦ)†AµΦ− 1

2
g2(AµΦ)†AµΦ.

If we compare it to the electromagnetic example, this is not the whole story. In
(1.14) we had the term FµνF

µν giving the Maxwell equations when taking variations
[27]. Its proxy in the non-Abelian setting is the Yang-Mills term.

Some historical geometric aspects and Yang-Mills theories

The inaugural lecture “On the hypothesis which lie at the foundations of geometry”
given by B. Riemann in 1854 is considered a landmark in mathematics (see [62] for an
English translation with detailed explanations). It is known that C.F. Gauss praised
it greatly2. But it was not published until the year in which Riemann passed away
and the first impression for a reader is that of a vague outreach paper with very few
formulas. It only reflects the hope of Riemann to be understood by the most of the
audience.

A main point in that talk is that one can define intrinsically geometric objects by
local metric properties, without any reference to an outer space. It took many years
and many authors to develop this idea, that was extremely important in general

2He forced the topic breaking the tradition of admitting the candidate first choice that was
Riemann’s Habilitationsschrift, a masterpiece on Fourier series.
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relativity. One of the pioneer contributors to this new view of geometry was T. Levi-
Civita who defined an absolute derivative [46] introducing a method to displace a
vector to a nearby point, this was a way to “connect” points and the origin of the
term connection. Without entering into the mathematical definitions, the idea is very
simple: If there is not a privileged global orthonormal frame, to study the variation
(the derivative) of a vector field V , we have to take into account the variation of the
coordinates plus the variation of the reference frame, this gives covariant derivatives
or connections (in a strict sense)

(1.20) DiV =
(
∂iV

k + ΓkijV
j
)
∂k.

The functions Γkij must satisfy certain consistency conditions to avoid contradictions
when changing coordinates. It turns out that there is only a possible choice of the
Γkij if one wishes to keep some compatibility with the metric structure [62]. This is
the so-called Levi-Civita connection in which Γkij are the Christoffel symbols.

It is apparent the similarity between (1.20) and the covariant derivative in the
context of gauge fields. This similarity becomes identity when the concept of vector
bundle or, more in general, that of fiber bundle is taken from mathematics. Surpris-
ingly, it seems that, after the breakthrough in the physical gauge theory by C.N. Yang
and R. Mills in 1954 [78], it took many years to note this coincidence. The following
opinion was expressed by Yang in a recent colloquium [77]

It came as a great shock [. . . ] when it became clear in the 1970s that the

mathematics of gauge theory, both Abelian and non-Abelian, is exactly the

same as that of fiber bundle theory. [. . . ] it served to bring back the close

relationship between the two disciplines [mathematics and physics] which had

been interrupted through the increasingly abstract nature of mathematics since

the middle of the 20th century.

Without entering into details, we are going to give a formulation of what can be
called a gauge principle with a mathematical flavor (but not very technical). Let
G be a generic element of a matrix Lie group included in GL(N) and consider the
covariant derivative

(1.21) DµΨ = ∂µΨ + igAµΨ with Aµ in the Lie algebra.

Assume for simplicity that Ψ : U −→ RN with U ⊂ Rn (more formally, Ψ should be
a section of the bundle). Under

(1.22) Ψ 7−→ GΨ and Aµ 7−→ GAµG
−1 + ig−1(∂µG)G−1

we have that DµΨ 7→ GDµΨ, i.e. the derivative is actually covariant. Here g
is a coupling constant that is separated from Aµ for convenience in the physical
interpretation. In our first examples was the charge of the electron.
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Let us write G0 to indicate a generic element of the Lie group constant in U .
Then we can deduce that for any Lagrangian L = L(DµΨ,Ψ),
(1.23)
L(∂µΨ,Ψ) invariant under Ψ 7→ G0Ψ ⇒ L(DµΨ,Ψ) invariant under (1.22).

As in the examples above, (1.23) can be used to create involved Lagrangians once
one guesses the gauge group. This idea has been specially successfully in the creation
and development of the Standard Model. We can rephrase (1.23) in physical terms
saying that the invariance of the Lagrangian with respect to local transformations
determines the interaction of Ψ with the gauge field Aµ. But we still need a term,
like FµνF

µν in (1.14), giving the Lagrangian of the field itself.
This new term must depend only on Aµ and must be gauge invariant. In Rieman-

nian geometry an important construction associated to the Levi-Civita connection
and already appearing in Riemann’s inaugural talk is the curvature tensor . It corre-
sponds to the difference between cross partial covariant derivatives. Define Fµν such
that for any Ψ

(1.24)
[
Dµ, Dν

]
Ψ = igFµνΨ.

Note the analogy with Faraday’s tensor. It can be proved that it is well defined
and behaves as a covariant tensor3 in the indexes µ and ν. On the other hand,
under gauge transformations on Aµ, as in the second part of (1.22), it changes as
Fµν 7→ GFµνG

−1 (this is simpler than it seems, just the covariance of the derivatives).
Then the natural “scalar” FµνF

µν , actually a matrix, obeys the same rule and we
can do it invariant under the gauge transformations taking traces. Summing up, a
plausible term to add in the Lagrangian is the Yang-Mills Lagrangian

(1.25) LYM = −1

2
Tr
(
FµνF

µν
)
.

The Euler-Lagrange equations corresponding to (1.25) are the Yang-Mills equa-
tions [51]

(1.26) ∂µFµν + ig[Aµ, Fµν ] = 0,

that in the case of the electromagnetic field are the Maxwell equations.

Ironically, this cumbersome geometrization of gauge theories in which the poten-
tial corresponds to the connection and the field strength to the curvature [31] that
has been crucial in the modern understanding of the Standard Model, is very close

3The usual introduction of the curvature tensor in Riemannian geometry is as a tensor field
covariant in three indexes and contravariant in one. To recover the analogy one has to note that in
our setting Fµν is a matrix, a tensor of type (1, 1), at each point.
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to the initial introduction and development in the period 1918–1929 of the concept
of gauge done by H. Weyl. His aim was the unification of the electromagnetism and
gravitation (general relativity), where the curvature plays an important role in the
theory. In his works the term “gauge”, introduced in 1918 by himself (in German),
is more natural than nowadays because it corresponded to a change of scale in the
metric [53]. The modern language of differential forms initiated by É. Cartan is spe-
cially useful to present these ideas in a compact form. We have avoided it because
it requires a stronger background.

A final comment is that the electro-weak sector in the Standard Model presents
an important variation with respect the scheme explained here. It is a Yang-Mills
theory with group U(1) × SU(2) giving 1 + dim su(2) = 4 fields, associated to the
photon and the bosons W± and Z. The problem is that the massive nature of the
particles W± and Z (related to the short range of the weak interaction) does not
fit the pure Yang-Mills scheme. A new term was added to the Lagrangian to solve
this problem breaking the symmetry imposed by the gauge group (see [24, §9.3] for
a simple and convincing mathematical explanation). It is associated to the Higgs
particle that was recently detected at the LHC.

1.2 Quantizing Yang-Mills theory with a lattice

The path integral

The path integral formalism is one of the highlights of quantum mechanics. It can
be traced back to a paper by Dirac [17] that, as its title suggests, in some way
recovers the Lagrangian for a quantum mechanic dominated by the Hamiltonian,
the main mechanical ingredient in the Schrödinger’s equation. This paper was un-
noticed during many years (it was published in a less known journal, fortunately
J. Schwinger includes it in his selection [58]). The idea was retaken and fully devel-
oped by R. Feynman. Probably the prestige and social projection of Feynman, who
wrote the wonderful popular science book on this idea [22], have eclipsed Dirac’s
contribution even today, although Feynman referred to it in his Nobel lecture and in
other occasions.

There are many specific examples in [23], we simply mention the general idea
following mainly [50].

Consider the classical time independent Hamiltonian in one spatial dimension

(1.27) H =
p2

2m
+ V with V = V (x), x ∈ R.

Schrödinger’s equation tells us that the probability amplitude to go from (x0, t0) to
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(x1, t1) is

(1.28) 〈x1|e−iH(t1−t0)|x0〉.

We could insert spurious t1/N , t2/N ,. . . t(N−1)/N and decompose

(1.29) e−iH(t1−t0) =
N∏
j=1

e−iH(tj/N−t(j−1)/N )

and we can also insert a superfluous complete set of states |xj/N〉 corresponding to
intermediate positions, at time tj/N , satisfying the completeness relation

(1.30)

∫ ∞
∞

dxj/N |xj/N〉〈xj/N | = I.

In this way, the amplitude is

(1.31)

∫
RN−1

N−1∏
j=1

dxj/N

N∏
j=1

〈xj/N |e−iH(tj/N−t(j−1)/N )|x(j−1)/N〉.

To simplify the situation, say that tj/N − t(j−1)/N is constant, ∆t, i.e. tj/N = t0 +
j∆t with ∆t = (t1 − t0)/N . If N is large, then ∆t is small and the first order
approximation in Baker-Campbell-Hausdorff formula, gives

(1.32) 〈xj/N |e−iH∆t|x(j−1)/N〉 ∼ 〈xj/N |e−i∆tp
2/2m|x(j−1)/N〉e−i∆tV (x(j−1)/N ).

On the other hand, in the moment space, 〈xj/N |e−i∆tp
2/2m|x(j−1)/N〉 equals

(1.33)

∫
dp

2π
e−i∆tp

2/2m〈xj/N |p〉〈p|x(j−1)/N〉 =

∫
dp

2π
e−i∆tp

2/2m+ip(xj/N−x(j−1)/N ).

Computing the integral [39] and substituting in (1.31), we have that

(1.34) 〈x1|e−iH(t1−t0)|x0〉 ∼
∫
RN−1

DNx eiSN

where we are using the abbreviations
(1.35)

DNx =

∏N−1
j=1 dxj/N

(2πi∆t/m)n/2
and SN = ∆t

N∑
j=1

(m
2

(xj/N − x(j−1)/N

∆t

)2

− V (x(j−1)/N)
)
.

One can consider SN as a Riemann sum of the classic action S =
∫ t1−t0

0
L dt and

we could interpret that the measure DNx in the limit is a measure Dx in the infi-
nite dimensional space of all possible paths. The approximation (1.32) via Baker-
Campbell-Hausdorff formula becomes equality when N → ∞, then we have the
appealing formula

(1.36) 〈x1|e−iHT |x0〉 =

∫
Dx ei

∫ T
0 L dt.
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In our case, L = 1
2
mẋ2 − V . This is a path integral . The suggestive and interesting

point is that if we blindly apply the stationary phase principle we have the classical
trajectories via the principle of least action.

The quantum field analog of (1.36) is that the vacuum expectation of an observ-
able O is given by

(1.37) 〈O〉 =
1

Z

∫
Dφ OeiS[φ] with Z =

∫
Dφ eiS[φ].

Although (1.36) is very impressive as well the derivation of classical trajectories,
in a first reading, the path integral formalism is nothing else that an alternative
approach to write the solutions of Schrödinger’s equation. In fact, in [23] is presented
in this way (see the “Purpose of the book” in p.23). There is also a pitfall. It is not
clear if the definition is sound because the convergence of the sequence of the finite
dimensional highly oscillatory integrals is doubtful.

Part of the calculations of path integrals depend on the following formula, note
the analogy with (1.37), valid for any vector ~b ∈ RN and a positive N ×N matrix A

(1.38)
IN(A,~b)

IN(A,~0)
= e

1
2
~btA−1~b when IN(A,~b) =

∫
e−

1
2
~xtA~x+~b·~xdNx.

The form of the result does not depend on the dimension. When studying scalar free
fields in quantum field theory, in the Lagrangian we find something like ∂µ∂µ+m2 in-
stead of A and a field ϕ instead of ~x and one hopes that the formula is valid replacing
A−1 by the corresponding inverse operator, closely related to the Green function, the
propagator . This is very appealing but, even overlooking the positivity, clearly the
Lagrangians have not in general a quadratic-like form4. One may conjecture a per-
turbative quadratic approximation can be done paying with some polynomial terms
like in the real numbers

∫
e−x

2+λxndx ∼
∫

(1 + λxn)e−x
2
dx for small λ. The different

contributions of these polynomial terms can be counted by pictorial representations,
the Feynman diagrams5.

Even without a mathematical sound definition, the path integral gives a deep
insight about the simplest cases and about the perturbative regime in general.

4In [79, I.11], A. Zee makes ironic but illustrative comments: “Quantum field theory is not that
difficult; it just consists of doing one great big integral [. . . ] Quantum field theorists try to dream
up ways to evaluate (1) [the path integral for the φ4 Lagrangian], and failing that, they invent
tricks and methods for extracting the physics they are interested in, by hook and by crook, without
actually evaluating (1).”

5In part they were anticipated by E. Stueckelberg, a physicist with several unrecognized contri-
butions to quantum field theory.
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The lattice approach to the non perturbative theory

Browsing books of quantum field theory, one might conclude that the fundamen-
tal part of the subject consists of drawing, understanding and computing Feynman
diagrams. The sad truth is that this emphasis depends on our poor ability to do
calculations in the non perturbative regime. On one hand Feynman trumpets the
precision of the theoretical calculations of the magnetic moment of the electron
in 1983 (“If you were to measure the distance from Los Angeles to New York to this
accuracy, it would be exact to the thickness of a human hair” [22]) and on the other
hand, even today, we have only mild theoretical estimations for the same quantity
for the proton. In highly non perturbative theories like the strong interaction and in
general in Yang-Mills theories, we are losing the big picture (but something can be
saved [55]). Even leaving aside the calculations, from the theoretical point of view it
seems that destroying the high symmetry of Yang-Mills theory, the gauge invariance,
is a wrong approach.

In this context, and with the increasing capabilities of the computers, lattice
gauge theory has acquired a growing interest. It was introduced by K.G. Wilson in
[75]. The idea is using a discretization of the spacetime, through a lattice (aZ)4 and,
quoting Wilson, “a lattice version of Euclidean vacuum expectation values, starting
from a lattice version of the Feynman path integral”. The value of a−1 plays the
role of an ultraviolet cutoff that breaks Lorentz covariance but, on the other hand,
there is a perfect preservation of the symmetries of the Lagrangian. Zee [79, VII.1]
jokes “Wilson proposed a way out: Do violence to Lorentz invariance rather to gauge
invariance”.

In the next lines we briefly review the elements of lattice gauge theory and we
show how to recover (invent?) the Yang-Mills Lagrangian from this approach. For
more information see the monographs [61] [57].

The analogue of (1.37) on the lattice is

(1.39) 〈O〉 =
1

Z

∫ ∏
x,µ

dUµ(x) Oe−SW with Z =

∫ ∏
x,µ

dUµ(x) e−SW .

It is apparent that it has been introduced a Wick rotation to regularize (see [57,
p.21]) that makes the approach closer to statistical mechanics [41]. The spacetime
becomes Euclidean.

Let us explain the ingredients in (1.39).

The points x are points in the lattice, i.e. of the form x = an with n ∈ Z4.
A straight line path joining two neighbors of the lattice in the µ̂ direction, x and
x + µ̂ is called a link . A plaquette P (x;µ, ν) is the square bounded by 4 links with
vertexes x, x+ aµ̂, x+ aµ̂+ aν̂ and x+ aν̂ with µ 6= ν.
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For each link connecting x and x+ aµ̂ we have a parallel transporter Uµ(x) that
takes the field from one extreme of the link to another. Under gauge transformations,
it follows the rule.

(1.40) Uµ(x) 7−→ Ω(x)Uµ(x)Ω(x+ aµ̂).

For a closed path C on the lattice, a Wilson loop, the trace of the product of all
parallel transporters in the path is gauge invariant.

When we do this in a plaquette P (x;µ, ν) we have a natural gauge invariant
action
(1.41)
SP (x;µ,ν) = Tr

(
U(x;µ, ν)

)
with U(x;µ, ν) = Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν(x).

The action SW appearing in (1.39) essentially is the sum of SP (x;µ,ν) over all plaquettes
with a normalization constant (see [48] [41]).

plaquette

lin
k

x x+µ̂

x+µ̂+νx+ν̂

In the plaquette

A = Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν (x)

↓

Ω(x)AΩ†(x)

Finally, the (finite) integration in (1.39) is over all possible parallel transporters.
For the gauge group that we consider, over all possible matrices in SU(N). In this
compact group there is an invariant measure, the Haar measure, that is the one
employed to integrate [25].

Noticeable limiting cases

We are going to check that the Yang-Mills action is recovered if we assume that the
parallel transport is done through Pexp

(
− i
∫
γ
Aµdx

µ
)

where Pexp denotes the path

ordered integral (by simplicity we omit the coupling constant). The motivation of
this operator6 in quantum mechanics and in QED can be found in the old paper [21].

For a small this gives Uµ(x) ≈ e−iaAµ(x+aµ̂/2) and substituting in (1.41)

(1.42) SP (x;µ,ν) = Tr
(
e−iaAµ(p1)e−iaAν(p2)eiaAµ(p3)eiaAν(p4)

)
where the notation is:

6Mathematically is as simple as saying that to solve the matrix differential equation X ′(t) =
AX(t), X(0) = I one needs the exponential, X(t) = etA but if A depends on t, one needs the path
(time) ordered integral (see also [25, p.555]).
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p = x+
a

2
(µ̂+ ν̂)

p1 = x+
a

2
µ̂

p2 = x+ aµ̂+
a

2
ν̂

p3 = x+
a

2
µ̂+ aν̂

p4 = x+
a

2
ν̂

    p

p1

p3

      p4 p3       

µ̂

ν̂

By the Baker-Campbell-Hausdorff formula, to order 2 the product of the two first
exponentials amounts

(1.43) exp
(
− iaAµ(p1)− iaAν(p2)− 1

2
a2[Aµ(p), Aν(p)]

)
.

Taylor expanding around p,

(1.44) exp
(
− ia

(
Aµ −

a

2
∂νAµ

)
− ia

(
Aν +

a

2
∂µAν

)
− 1

2
a2[Aµ, Aν ]

)
where the field and its derivatives are evaluated at p. In the same way, the product
of the last exponentials gives

(1.45) exp
(
ia
(
Aµ +

a

2
∂νAµ

)
ia
(
Aν −

a

2
∂µAν

)
− 1

2
a2[Aµ, Aν ]

)
.

Now, we multiply (1.44) and (1.45) to get via (1.42)

(1.46) SP (x;µ,ν) ∼ Tr
(

exp
(
ia2∂νAµ − ia2∂µAν + a2[Aµ, Aν ]

))
.

Recalling the definition of the curvature (1.24), we have

(1.47) SP (x;µ,ν) ∼ Tr
(

exp
(
− ia2Fµν

))
∼ 1− 1

2
a4Tr

(
Fµν
)2
.

Then a−4
(
SP (x;µ,ν)−1

)
is like the (Euclidean) Yang-Mills Lagrangian (1.25) and when

we sum over the plaquettes we obtain the lattice approximation of the Yang-Mills
action.

Wilson entitled his paper [75] “Confinement of quarks”. A fascinating aspect of
lattice gauge theory is that gives some hint about the, still unproved, confinement
properties of Yang-Mills theories. Without entering into details (see [48] for short
simple explanations), the point is that in the strong coupling limit, when the coupling
constant goes to∞, we can do some natural approximations. Consider a rectangular
Wilson loop C, the boundary of a rectangle of dimensions R and T , where R phys-
ically represents the separation between quarks and T is the time. If W (C) is the
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(normalized) trace of the product of the parallel transporters corresponding to C,
then it can be proved that the vacuum expectation verifies, with suitable normaliza-
tions, log〈W (C)〉 ∼ −V R for T large where V is the potential energy. On the other
hand, the strong coupling limit suggests an area law log〈W (C)〉 ∼ −KArea(C).
Thus one would obtain that the potential energy is proportional to the distance,
than would imply confinement.

1.3 Large N

Motivation and results

In 1974, shortly before [75], ’t Hooft introduced the use of the number of colors N
as a large parameter in non Abelian gauge theories [64]. In order to get a nontrivial
limit theory, one has to run accordingly the coupling constant in such a way that

(1.48) g2N → constant � 1 whenever N →∞.

This is the ’t Hooft coupling (not the only possibility [14]). See the reasons for the
numerology in [79] and [48].

Perhaps the closer analogy is in statistical mechanics where expanding in a large
unknown number of particles turns out natural. Some authors have also pointed the
analogy with [63] where an approximation to a model of phase transition is solved
assuming that the spin goes to infinity.

In principle it seems an idea very far from physical reality because in the Standard
Model we have a strong force with just three colors but, quoting ’t Hooft, “The 1/N
expansion may be a reasonable perturbation expansion, in spite of the fact that N
is not very big.” [64]. Here we are going to emphasize two point in favor of these
expansions. The first one is phenomenology and the second and most important
point is the simplification of the theories.

After [64], ’t Hooft published a model for mesons based on it [65]. Years later,
E. Witten wrote about baryons that are more complicated [76]. Although these
theories do not seem very physical (it is a 1 + 1 dimensional theory for mesons and
baryons have N quarks), there are some noticeable results assuming confinement at
N =∞ suggesting that we are under the right phenomenology.

We simply quote here some of the items listed in [14]. See [11] and [76] for more
information.

• The decay amplitude of mesons is O
(
N−1/2

)
(stability).

• The scattering amplitude of mesons is O
(
N−1

)
(no interaction).

• The vertexes corresponding to l glueballs contribute O
(
N1−l) (no interaction

glueball-glueball).
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• The vertexes corresponding to l glueballs and k mesons contribute O
(
N1−l−k/2)

(no interaction glueball-meson).

• Baryon masses are O(N).

• The typical baryon-baryon vertex contributes O(N) (strong interaction be-
tween baryons).

According to [11] “For mesons, things are wonderful. [. . . ] the properties we found
[. . . ] form an accurate portrait of the mesons. They form a caricature. But it is a
recognizable caricature; [. . . ] For the baryons, things are not so good.”

Beyond these and other phenomenological “caricatures”, probably the most im-
portant reason to consider large N is that it simplifies the theories. Yang-Mills
models are so complicated that researchers are eager for finding toy models to play
with. One of the simplifying features is that in many interactions the large N limit
induces factorization of gauge invariant operators. This is a key point for the vol-
ume independence (reduction) in some models that will appear in the next chapter.
The factorization is essentially the independence that allows to write the vacuum
expectation value of a product of traced observables as the product of vacuum ex-
pectations.

Planar diagrams

Let us see the kind of simplification of the theory that ’t Hooft got in the original
paper [64] in the large N limit. He considered U(N) as the gauge group instead of
SU(N). This is simply a technical point. With the usual choice of the normalization,
the generators T a of the Lie algebra of SU(N) satisfy

(1.49)
∑
a

T aijT
a
kl =

1

2
δilδjk −

1

2N
δijδkl.

In U(N) the last term does not appear but for large N if we only consider leading
terms, both cases are equivalent.

With the double line notation [48], each gluon propagator is represented by a
double line contributing as in (1.49)

i

kj

l
∝ δilδjk

Since there are N colors, each loop gives a contribution proportional to N . On the
other hand, the 3-gluon vertex and the 4-gluon vertex give contributions proportional
to g and g2 in their diagrams. Then the diagrams are associated with a factor

(1.50) gV3+2V4N I where


I = # “index” (gluon) loops,

V3 = # 3-gluon vertexes,

V4 = # 4-gluon vertexes.
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To ease the exposition, we assume, as in [70], that there are not external lines (we
deal with vacuum diagrams) and there are not quark loops. The first assumption
can be dropped introducing 2-vertexes and the second with a global factor (see the
details in [70]).

Drawing thick lines instead of double lines we can transform the diagrams into
graphs (by simplicity we do not draw arrows)

−→ −→

With the usual notations, let V , E and F be the number of vertexes, edges and
faces7 of the graph (including the exterior one). We know that 2E =

∑
j jVj because

each edge connects two vertexes. Then (1.50) is

(1.51) gv3+2V4N I = g2E−2VNF = (g2N)F−χNχ

where V −E+F = χ is the Euler characteristic, a topological invariant that reaches
its maximal value χ = 2 for planar graphs, those that can be drawn on the plane
without self-intersections. Then in the large N limit (1.48), planar diagrams are
dominant with a contribution ∝ N2. This is a huge reduction on the diagrams to
be considered, and shows the kind of vast simplifications that appear in the large N
limit. In the figures above, the first diagram is planar and contributes g8N6 = λ4N2

with λ = g2N and the second diagram is not planar and contributes g6N3 = λ3.

To deduce that for every planar graph V −E +F = 2, there is a simple intuitive
argument [56, §12]. Just consider the planar graph as an island with F − 1 fields.
If we break a dyke to flood each field (edge), we reduce the problem to the study of
the trivial case of a tree (f − 1 = 0).

−→ −→

Non planar graphs are drawn on surfaces with handles that connect fields and allow
to perform the flooding more efficiently. It explains why χ is smaller.

7Strictly speaking, the definition of each face is associated to the embedding of the graph on a
surface, rather than to the graph itself.
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A comment about large N simulations

Doing numerical simulations of large N theories is not an easy task. Assume for
simplicity that in (1.39) we are only considering a finite number of values of x (see
the models of the next chapter). Although Z is a finite integral, is too complicate
to try deterministic integrators. The natural approach is Monte Carlo integration.
A key point is to generate random SU(N) matrices with a certain distribution [13].

Let us think firstly in a simpler problem: Simulate a sample of a real random
variable (in R) with density function compactly supported in [a, b]. A useful general
purpose method is rejection sampling . It reduces to the single steps:

• Generate (x, y) under an uniform distribution in [a, b]× [0,max f ].

• If y < f(x) accept x in the sample.

• Repeat the process until having a sample of the required cardinality.

This works quite well (although there are better algorithms in special cases) but
if we try to adapt it to SU(N) with N large, we shall suffer what is called in several
areas of statistics the curse of dimensionality .

We just mention here the ingenious idea introduced in [8] and [52] that is the
basis of several approaches. To generate matrices of SU(N), one considers

(1.52)


1

1
. . .

1
AN−1




1

1
. . .

AN−2

1

 · · ·

A1

1
. . .

1
1


where A1, A2,. . . , AN−1 are matrices of SU(2), that have low dimension. Thanks
to the properties of the Haar measure, the Aj’s inherits in some way the required
distribution for SU(N).

See also [15] for an overview of the current methods and [28] focused on the kind
of models that we shall treat later.
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Chapter 2

A twisted model on the flat 2-torus

2.1 Brief review on the EK and the TEK models

Volume independence

In some models the combination of lattice gauge theory and large N induces an
interesting property called volume independence (or reduction). These models are
important by themselves but we shall be extremely sketchy here because we do not
need them for our purposes. Consequently in this section we just mention some
aspects of the models as a motivation without entering into details. For more infor-
mation see [7, Ch.7], [47, §4] and [41].

If we recall the partition function Z in lattice gauge theory (1.39), we note that
the product extends to the, in principle, infinitely many points in the lattice. This
is unaffordable from a practical point of view and it suggest to impose periodic
conditions. We shall come back on this in the next section but we should keep in
mind this framework now.

T. Eguchi and H. Kawai proved in [18] a surprising result assuming certain facts:
In the large N limit, Z in (1.39) can be replaced by

(2.1) ZEK =

∫ ∏
µ

dUµ(x) e−SEK .

where, up to normalizing factors, SEK is

(2.2)
∑
µ 6=ν

Tr
(
UµUνU

†
µU
†
ν

)
.

If we compare it with (1.39) and (1.41), we see that the dependance on the points
of the lattice has disappeared. This is the aforementioned volume independence (or

19
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reduction, for the reduction on the degrees of freedom) and the resulting model is
the Eguchi-Kawai model (EK). The authors mention in their paper that the result
is based on three assumptions. Two of them have to do with the loop equation and
its relation with factorization, and the third one is related to symmetry. We briefly
review them here.

Loop equations and factorization

To establish the equivalence between the model on the lattice and the reduced one,
identifying all the Uµ(x) for a given µ into a single Uµ, Eguchi and Kawai considered
Wilson loops and proved that they satisfy the same kind of equations in both models.
These are the loop equations . For a simple loop C (without self-intersections) they
read

(2.3)
〈
Tr
(
W (C)

)〉
∝
∑
µ6=ν

(〈
Tr
(
W (C)U(x;µ, ν)

)〉
−
〈
Tr
(
W (C)U †(x;µ, ν)

)〉)
with a normalizing constant coming from the action, where U(x;µ, ν) is like in (1.41)
and W (C) is the product of the parallel transporters along C. If C is not sim-
ple, say that it can be divided into two simple paths C1 and C2, then an extra
term

〈
Tr
(
W (C1)

)
Tr
(
W (C2)

)〉
appears. Assuming factorization at N = ∞, it gives〈

Tr
(
W (C1)

)〉〈
Tr
(
W (C2)

)〉
.

Symmetry breaking and the twisted model

After constructing the loop equations, the argument in [18] depends on canceling
some traces corresponding to open paths. Algebraically, it reflects an inner sym-
metry: Everything should be invariant under the change Uµ 7→ e2πik/NUµ because
this transformation preserves SU(N) and the constant factors commute with any
matrix (they are in the center of the group via λ 7→ λI). If a path is open then for
certain µ there are Uµ not compensated by U †µ and the symmetry proves that the
trace vanishes.

After the publication of [18] (in fact the reference appears as a note added in
proof), it was shown [4] that this symmetry is spontaneously broken for the weak
coupling. Nevertheless the property of volume independence is so appealing that it
is worthy to look for modifications in the original model.

The main modification was introduced shortly after by A. González-Arroyo and
M. Okawa in [34] and [33]. It is called the twisted Eguchi-Kawai model (TEK), The
novelty is a change in the action introducing an N -root of the unity that comes from
the generalization of the periodic boundary conditions and is motivated by the twists
introduced in [66] in other context. The possible symmetry breaking in the modified
model is discussed in [71], [35] and [37]. An interesting point is that the choice of
the twist gives more chances to preserve the symmetry.
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2.2 Yang-Mills theory on a twisted torus

Definition of the bundle

The configuration space of the model is T2, the flat torus with periods L and L.
Formally it is the quotient space

(2.4) T2 = R2/(LZ)2 endowed with the metric dx2 + dy2,

where (LZ)2 identifies the pairs (x1, x2) and (x1 + n1L, x2 + n2L) with n1, n2 ∈ Z.
We consider an SU(N) principal fiber bundle to define the gauge group. Then the

vector potentials are represented by Aj, j = 1, 2 (corresponding to each coordinate)
and belonging to su(N), i.e. they are N×N traceless hermitian matrices. In principle
one is tempted to consider them as functions of each point of T2 or, equivalently,
defined in R2 imposing that Aj is L periodic in each variable. But this is too
demanding from the physical point of view because the potentials are only defined
modulo gauge transformations. From the mathematical point of view, one must
define transition functions (matrices in this case) to determine the bundle and the
connection (the potential) must be invariant by them. Hence, we consider Ωj(x),
j = 1, 2 specifying how to glue the horizontal and the vertical boundaries in the
square representation.

Ω1

Ω1(x) = Ω1(x2)

Ω2(x) = Ω2(x1)

Ω2

Then the natural condition for the gauge fields to be consistent with the topology
of the bundle is that Aj(x + L~el) is the same as Aj(x) after applying the gauge
transformation Ωl(x), where

{
~e1, ~e2

}
is the usual canonical basis of R2. Recalling

(1.22), we have

(2.5) Aj(x+ L~el) = Ωl(x)Aj(x)Ω†l (x) + iΩl(x)∂jΩ
†
l (x).

Note that Ω† = Ω−1 in SU(N). We have a lot of freedom to choose the Ωl’s but
they are not independent functions when considered on R2 because (2.4) requires
the commutation relation L~ej + L~el = L~el + L~ej, that characterizes the Abelian
group (LZ)2 ,to be preserved. Then the actions of the gauge transformations Ωj(x+
L~el)Ωl(x) and Ωl(x+L~ej)Ωj(x) must coincide acting on vector potentials. In principle
this gives complicate equations using (2.5), but they simply reduce to say that

(2.6) Ωj(x+ L~el)Ωl(x)
(
Ωl(x+ L~ej)Ωj(x)

)†
commutes with any gauge potential. One could take it as the identity I, this is the
no-twist condition, but it could be in general of the form λI with λ ∈ C. Noting that
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the determinant implies λN = 1 and that trivially λ = 1 for j = l, the most general
consistency conditions are the twisted boundary conditions (cf. [67])

(2.7) Ωj(x+ L~el)Ωl(x) = e2πinjl/NΩl(x+ L~ej)Ωj(x) where njl = −nlj.

This establishes different topological twist sectors according to the choice of n12.
Gauge transformations are actually defined modulo the center of the gauge group

(meaning that the center acts trivially). This is the center symmetry1. The value
of Ωj(x)Ω(x)Ωj(x)†could differ from Ω(x+ L~ej) in an element of the center, and we
then have

(2.8) Ω(x+ L~ej) = e2πikj/NΩj(x)Ω(x)Ωj(x)†.

As mentioned in [32], njk measures the topological obstruction to lift the bundle
from SU(N)/ZN to SU(N).

To avoid problems with subgroups, from now on we assume that N is a prime
number N > 2. The rough idea is that if N is composite then the center is a direct
product of smaller groups that would give a more involved sector structure.

We have a lot of freedom to choose valid transition matrices, i.e. satisfying (2.7).
Since we are going to use them in some way to analyze the gauge field, it is convenient
to do it in a simple but still versatile way. A natural one is taking constant matrices.
This kind of solutions are called twist eaters and they also appear in the lattice gauge
approach [41].

In the papers [73] and [45], it has been studied the problem of finding the most
general formulas for twist eaters not related by similarity transformations (global
gauge transformations). Here we give a simple proof that fits our case. If we call Γ1

and Γ2 the constant matrix solutions of (2.7), then

(2.9) Γ2 = e2πin12/NΓ−1
1 Γ2Γ1.

Hence the eigenvalue set is invariant under multiplication by e2πin12/N . We leave apart
the no-twist condition (n12 = 0). Then, the eigenvalue set is also invariant by e2πi/N .
Note that this requires the absence of proper subgroups of ZN or equivalently that
N is prime. Then with a similarity transformation, the one changing to the Jordan
basis, we have that

(2.10) Γ2 = ξ(1−N)/2


1 0 0 . . . 0
0 ξ 0 . . . 0
0 0 ξ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ξN−1

 with ξ = e2πi/N .

1In [66] it is considered that the actual gauge group is SU(N)/Z.
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The outer factor ξ(1−N)/2 is just to force Γ2 ∈ SU(N). Substituting in (2.9) and
multiplying by ξ(N−1)/2Γ1 in both sides, we have that the element jk of Γ1, say(
Γ1

)
jk

, satisfies

(2.11)
(
Γ1

)
jk

= e2πi(n12+k−j)/N(Γ1

)
jk
.

Then we have the natural choice of the permutation matrix corresponding to an
n12-shift modulo N . If n12 > 0 (which we can assume interchanging Γ1 and Γ2)

(2.12)
(
Γ1

)
jk

=


1 if 1 ≤ j = k + n12 −N ≤ n12,

1 if 1 ≤ k = j − n12 ≤ N − n12,

0 otherwise.

With any constant matrix choice, (2.5) reads

(2.13) Aj(x+ L~el) = ΓlAj(x)Γ†l .

For each ~e = (e1, e2) defined modulo N , we consider the N ×N matrices (cf. [68])

(2.14) Γ̂(~e) =
1√
2N

eiαΓe11 Γe22

where α is an arbitrary phase to be fixed later. These vectors can be considered as
representations of the center symmetry, associated to the group ZN ×ZN , one cyclic
group per coordinate. They are called (chromo-)electric flux vectors .

It holds

(2.15) ΓjΓ̂(~e)Γ†j = e2πinjkek/N Γ̂(~e)

where in njkek is assumed summation on k. Recall that njk was skew-symmetric
(2.7), then there is only a term in the sum. The relation (2.15) follows from (2.7)
using the identities
(2.16)

Γ1

(
Γe11 Γe22

)
Γ−1

1 = Γe11

(
Γ1Γ2Γ−1

1

)e2 and Γ2

(
Γe11 Γe22

)
Γ−1

2 =
(
Γ2Γ1Γ−1

2

)e1Γe22 .

Expansions of the gauge field

Taking traces in (2.15), we have that for ~e 6= ~0 modulo N then the matrices Γ̂(~e) are
traceless. These N2 − 1 matrices are linearly independent as the explicit formulas
(2.12) and (2.10) show. We can express the gauge fields as a linear combination of
these matrices

(2.17) Aj(x) =
∑
~e

λj(x,~e)Γ̂(~e) with λj(x,~e) ∈ C.
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Here ~e runs over a complete reduced class of residue classes of vectors modulo N ,
i.e. all the residue classes except that of ~0. We assume this restrictions in all the
sums involving ~e. Using (2.13), (2.15) and the uniqueness of the λj’s (by linear
independence),

(2.18) λj(x+ L~el, ~e) = λj(x,~e)e
2πinlkek/N .

In particular, λj(x,~e)e
−2πixlnlkek/LN , with summation on l, k ∈ {1, 2}, is a L periodic

function in x1 and x2. We can hence expand it into Fourier series with orthonormal
harmonics L−1exp(2πimjxj/L) [72]. Substituting this expansion, we can re-write
(2.17) in the form

(2.19) Aj(x) =
1

L

∑
~p

Âj(~p)e
i~p·~xΓ̂(~e) with Âj(~p) ∈ C,

where the notation is as follows:

(2.20) ~x = (x1, x2), ~p = ~p(s) + ~p(c), p
(s)
j =

2πmj

L
, p

(c)
j =

2πnjkek
LN

.

Following [29], we can say that ~p(c) is the color-momentum, coming from the decom-
position (2.17) of the gluon field, and ~p(s) is the spatial-momentum, the usual one in
quantum mechanics: The variable in the (discrete) Fourier transform corresponding
to the space.

The total momentum is then of the form

(2.21) ~p =
2π~n

LN
with ~n ∈ Z2 and ~n ≡ n12(e2,−e1) (mod N).

Many values of ~p correspond to the same electric flux vector ~e and hence to the
same Γ̂(~e) in (2.19). We are going to let the arbitrary phase in (2.14) to depend
on ~p. With a suitable choice, namely (see [29])

(2.22) α(~p) =
n12NL

2

4π
p1p2 with n12n12 ≡ 1 (mod N),

we impose

(2.23) Γ̂(−~p) = Γ̂†(~p)

where Γ̂(~p) stands for Γ̂(~e) with the indicated choice of α. Then (2.19) reads

(2.24) Aj(x) =
1

L

∑
~p

Âj(~p)e
i~p·~xΓ̂(~p).
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Multiplying by Γ̂(−~q)e−i~q·~x, taking into account (2.14) and (2.23), we have the Fourier
coefficient formula (cf. [72])

(2.25) Âj(~p) =
2

L

∫∫
T

Tr
(
Γ̂(−~p)Aj(x)

)
e−i~p·~xd2~x.

Note that the 2 factor comes from Tr(I) = N times the normalizing factor in (2.14).

The only nontrivial component of the curvature form (1.24), for this 2-dimensional
theory with the covariant derivative ∂j + iqAj is the magnetic field

(2.26) B(x) = ∂1A2 − ∂2A1 − ig[A1, A2].

When we Fourier expand B as in (2.24), its coefficients are given, according to (2.25),
by

(2.27) B̂(~p) =
2

L

∫∫
T

Tr
(
Γ̂(−~p)∂1A2 − ∂2A1 − ig[A1, A2]

)
e−i~p·~xd2~x.

Substituting (2.24) the quadratic terms consist of a sum of Â1(~q)Â2(~q′) on ~q and ~q′

(recall that they are complex numbers and commute) with coefficient
(2.28)
g

L
δ(~q + ~q′ − ~p)F (−~p, ~q, ~q′) with F (−~p, ~q, ~q′) = −2iTr

(
Γ̂(−~p)

[
Γ̂(~q), Γ̂(~q′)

])
,

where we have used the notation of [29].
With the definition (2.14) and the choice of the phase α we have

(2.29) F (~p, ~q,−~p− ~q) = −
√

2

N
sin
(n12NL

2

4π
(~p× ~q)

)
.

This is the formula given in [29, (2.29)] and [30, (29)-(30)]. It is convenient for the
Hamiltonian approach but for our purpose here it is better to express it in other way.
Let ~q = 2π~m/(LN), then, after the relation (2.21), we can substitute the argument
of the sine by

(2.30)
n12NL

2

4π

2πn12

LN
(e2,−e1)× 2π

LN
~m,

that simplifies to

(2.31) F (~p, ~q,−~p− ~q) = −
√

2

N
sin
( π
N

(~e · ~m)
)
.

The important point to keep in mind is that this factor coming from expanding
[A1, A2] plays the role of the structure constants of the Lie algebra.
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Statement of the quantum mechanical problem

Our purpose is to study a pure gauge SU(N) Yang-Mills theory in T2×R. We have
already defined the configuration space T2, the bundle in terms of a twist n12 and we
have expanded the field in terms of the electric flux vectors ~e that are representations
of the center symmetry, associated to the group ZN × ZN .

When we consider the quantum mechanical system, the center symmetry is a
symmetry of the Hamiltonian that decomposes the underlying Hilbert space H into
a direct sum with the Hamiltonian acting on each sector

(2.32) H =
⊕
~e

H~e, H~e : H~e −→ H~e.

We define as 0 the energy of the ground state in H~0 that we consider the vacuum.
The lowest eigenvalues of H~e in the rest of the sectors (~e 6= ~0) should remain greater
than the vacuum energy, otherwise we have done a wrong choice of the vacuum and
we have the tachyonic instabilities (the vacuum becomes unstable and decays to a
lower state). We shall study these instabilities in the next chapter.

The volume independence in the EK and the TEK models shows a big simplifica-
tion when N →∞ in lattice based models, making them independent of the lattice
at the limit. The natural question is to study the same phenomenon in a continuous
setting. This is the main motivation for the 2 + 1 model treated here (in principle
3 + 1 is closer to the physical world but it is more difficult). To prevent instabilities,
we would like to keep a gap between the vacuum and the spectrum of H~e, ~e 6= ~0. This
is not possible in full generality (when L and N vary) as the numerical simulations
show, but we can play with the twist n12 and the conjecture is that for a suitably
chosen n12 we can keep the spectra above zero for every sector ~e 6= ~0 and every
L, as N grows (with n12 depending on N). Once we have a stable model, volume
independence reappears in this context as a dependence on the product NL.

It turns out that for L small the energy of any nonzero sector decreases with L
applying perturbation theory but on the other hand, under natural assumptions the
energy grows when the volume, L2, goes to infinity. In a scheme:

vacuum

glueballs

~e = ~0

g
a
p

perturbation
L→0

~e 6= ~0

g
a
p

L→∞

~e 6= ~0

EL

g2N2L

conjectural behavior

of the “mass” gap

In the next section we shall carry out the computations under the perturbative
regime but the result will be obtained in a non regularized form that does not show
whether it is increasing or decreasing. The regularization and the full study of the
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tachyonic instabilities is postponed to the next chapter. We cannot fully anticipate
here the exact results, we just indicate that the gap is related to

(2.33) x−2|~n|2 + αx−1f(~e/N) + β + γx2(|~e|/N)2 where x =
g2N2L

4π
,

α, β and γ are essentially constants comparable to 1, and ~n and ~e are related
through (2.21). The first two terms come from perturbation theory and the last
two terms from the expected non perturbative behavior (confinement). The point is
that f(~v) ∼ −1

2
|~v|−1 and we have to exploit the arithmetical relation between ~n and

~e to assume the positivity of the gap. This is the novelty of this memoir.

2.3 Perturbation theory

Euclidean regularization of the self-energy

We are going to assume in this section an Euclidean regularization, this is a Wick
rotation in the timelike coordinate: Changing t by −it everywhere, in particular the
Minkowski metric gαβ becomes the Euclidean metric δαβ up to the sign.

The self-energy depends on the vacuum polarization Πµν and is related to the
difference between the propagator and the dressed propagator , namely

(2.34) D−1
µν (p) = P−1

µν (p)− Πµν(p).

This derives from the summation of the Lippmann-Schwinger series [54, §7.5]

(2.35) D = P + PΠP + PΠPΠP + · · · = P (I− Pπ)−1 = (P−1 − Π)−1.

The apparently missing −i factors are due to the Euclidean context we have consid-
ered.

In our model there are only massless gluons, represented by the gauge fields Aµ.
The gauge fixed Euclidean Lagrangian is

(2.36) L =
1

2
Tr(FµνF

µν) +
1

ξ
Tr(∂µAµ)2 − 2Tr(c̄∂µD

µc)

where ξ is the gauge parameter and c is the ghost field . If we compare (2.36) to
(1.25), the second term is a kind of Lagrange multiplier to impose a particular gauge
choice. The last term, the Faddeev-Popov Lagrangian has to be still added in the
non-Abelian context. It comes from the quantization of the Yang-Mills equations
throw the path integral formalism. It is the price to pay to eliminate the redundancy
coming from gauge transformations in the non-Abelian case. It is a mathematical
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artifact, a “ghost” field that violates spin statistics and does not correspond to a
physical particle (see [79, III.4] for a specially short and clear explanation).

Each Π in (2.35) corresponds to one-particle irreducible [44] and in our case,
modeled by (2.36), there are three kind of contributions:

The tadpole The ghost loop The gluon loop

As a matter of fact, the name for the first diagram perhaps is not very appropriate
(it is usually applied to the case with one external line).

Some diagrams in QCD and their analogues

The basic Feynman diagrams in QCD are

gluon propagator ghost propagator 3-gluon vertex 4-gluon vertex ghost-gluon

See [2] for their contributions. With the usual normalization the structure constants
fabc are defined by [T a, T b] = ifabcT c. The orthogonality relation Tr

(
T aT b) = 1

2
δab

gives fabc = −2iTr
(
[T a, T b]T c

)
. Comparing this to (2.28), the diagrams for our

model can be derived essentially changing the structure constants by F (and gµν by
the Euclidean metric δµν).

Following [29], the contribution of the three kind of contributions is

(2.37)
g2

L2

∫ ∞
−∞

dq0

2π

∑
~q

F 2(~p, ~q,−~p− ~q)∆µν(p, q)

where for the tadpole and the ghost loop, we have in the Feynman gauge, respectively,

(2.38) ∆µν(p, q) = −2δµν
q2

and ∆µν(p, q) = −(p+ q)νqµ
(p+ q)2q2

.

And for the gluon loop

(2.39) ∆µν(p, q) =
δρρ′δσσ′

(p+ q)2q2
∆̃µν(p, q)

where ∆̃µν(p, q) is
(2.40)(
(p+2q)µδρσ+(p−q)ρδµσ−(q+2p)σδµρ

)(
(p+2q)νδρ′σ′+(p−q)ρ′δνσ′−(q+2p)σ′δνρ′

)
.
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The computation of the self-energy

Adding the contribution of the different diagrams [29], the result for the vacuum
polarization is
(2.41)

Πµν =
g2

2L2

∑
~q

∫
dq0

2π

F 2(~p, ~q,−~p− ~q)
q2(p+ q)2

(
4(δµνp

2−pµpν)+(pµ+2qµ)(pν+2qν)−2δµνq
2
)
.

See [29, (3.48)] and the correction indicated in [30, (27)].
The Euclidean gluon propagator is Pµν(q) = δµν/q

2. Then one can read (2.34) as

(2.42) E2(~p) = |~p|2 −
∑
µ

Πµµ

with p = (iE , ~p) the Euclidean momentum (the usual one after Wick rotation). We
define the self-energy δE through

(2.43) g2δE2(~p) = −
∑
µ

Πµµ.

According [29, (3.50)], using the Ward-Takahashi identity pµΠµν = 0 and computing
the integral in (2.41),

(2.44) g2δE2 =
g2

2L2|~p|2
∑
~q

F 2(~p, ~q,−~p− ~q)
(
2|~p|2 + ~p · ~q

)( 1

|~q|
− 1

|~p+ ~q|

)
.

We can rearrange the two latter factors as

(2.45)
2|~p|2

|~q|
− |~p|2

|~p+ ~q|
+
~p · ~q
|~q|
− ~p · (~p+ ~q)

|~p+ ~q|
.

The last two terms vanish after the summation by the odd symmetry ~q 7→ −~q
and ~p+~q 7→ −(~p+~q). In the second term we apply the translation ~q 7→ −~p+~q, that
leaves F 2(~p, ~q,−~p− ~q) invariant, to get finally

(2.46) g2δE2 =
g2

2L2|~p|2
∑
~q

F 2(~p, ~q,−~p− ~q) |~p|
2

|~q|
.

That is, recalling (2.31) and ~q = 2π~m/(LN) with ~m ∈ Z2 − {~0}

(2.47) g2δE2 =
g2

L

∑
~m 6=~0

sin2(π~m · ~e/N)

|~m|
.

This is not the end of the story because the series does not converges and requires
a regularization. We shall do it in the next chapter (see also Appendix A).
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Chapter 3

Tachyonic instabilities

3.1 The source of the instabilities

Regularization of the self-energy

The calculations done in the perturbative regime, see (2.47), prove that the self-
energy is essentially given by the formula

(3.1) S(~x) =
∑
~m 6=~0

sin2(π~m · ~x)

|~m|
where ~x =

~e

N
.

The series is divergent almost everywhere (it is only convergent for ~x ∈ Z2 indeed).
There is nothing unnatural about it because self-energy computations are beyond tree
level and require some kind of “renormalization”.

In [29] and [30] it is applied a dimensional regularization, a zeta regularization, in
combination with some properties of the Jacobi θ-functions. Actually the series (3.1)
can be expressed in terms of some zeta functions considered by C.L. Siegel in [60,
I.§5] generalizing those of M. Lerch and P. Epstein. In particular, it can be proved
the meromorphic continuation of

(3.2) Z(s, ~x) = 2
∑
~m 6=~0

sin2(π~m · ~x)

|~m|s

to the whole complex plane with a single pole at s = 2.
In Appendix A we give a different (although equivalent) approach that emphasizes

the role of some number analytical objects that have been fruitfully employed in other
physical topics (see [19]).

We address the reader to the aforementioned papers or Appendix A to get the
following results that summarize the regularization of (3.1) through (3.2) and its
behavior near the singularities.

31
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• For ~x 6∈ Z2, the nonconverging series (3.1) can be defined as the analytic
continuation of 1

2
Z(s, ~x) in (3.2) to s = 1.

• Once we have defined (3.1) in this way, if d(~x) is the distance of ~x to the closest
point in Z2, we have

(3.3) S(~x)d(~x)→ −1/2 as d(~x)→ 0.

In fact it is possible to prove S(~x)d(~x) = −1/2 +O
(
d(~x)

)
.

Tachyonic energies in the perturbative and non perturbative regimes

Now we are going to study the consequences of this analysis for the computation of
the energy.

Recalling (2.42), (2.43) and (2.47), with the notation of (3.1) we have the follow-
ing formula for the energy (to first order)

(3.4) E2(~p) = |~p|2 + g2δE2 with g2δE2 =
λ

2πNL
S
( ~e
N

)
where λ = g2N is the ’t Hooft coupling (1.48). We define here

(3.5) x =
λNL

4π

The momentum is quantized, (2.21), and it can only take values of the form

(3.6) ~p =
2π~n

LN
where ~n ∈ Z2.

With this notation, the dimensionless version of the energy is

(3.7)
E2

λ2
=

1

4x2
|~n|2 +

S(~e/N)

8π2x
.

The important point is that the positivity of E2 is conditional:

(3.8) E2(~p) > 0 ⇔ S
( ~e
N

)
> −2π2

x
|~n|2.

Note that the apparent positivity of the formula (3.1), a sum of positive numbers, it
is a mirage that it vanishes when we regularize it1.

Let d~e be the distance from ~e/N to the nearest lattice point in Z2. We know
by (3.3) that S(~e/N) ∼ −1/(2d~e) for small values of d~e. If d~e is small enough, then

1Perhaps the best known example of this phenomenon is the zeta regularization of 1+2+3+4+. . .
that gives −1/12 and appears in the Casimir effect in one dimension [38] [79, I.8].
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−x/d~e could be a large positive number greater than 2π2|~n|2 and the condition (3.8)
would not be fulfilled.

In the context of special relativity, a negative square energy corresponds to a
tachyon, a particle violating causality and traveling faster than light, recall the basic
formula E2 = (mc2)2/(1− v2/c2). At some moment in the 20th century it was con-
sidered the existence of tachyons as a possibility [20] but the mainstream nowadays
is to consider this weird “imaginary energy” as a symptom of some kind of instability
in the theory that is dubbed tachyonic instability . In our case, if E2(~p) < 0 when
x is small, then the perturbative theory collapses and we have a problem with the
model.

Putting together (3.8) and the previous comments, the existence of tachyonic
instabilities in the framework of perturbation theory is unavoidable when

(3.9) 0 < |~n|2d~e � 1 where d~e = dist
( ~e
N
,Z2
)
.

Recall that for a fixed n12, ~n and ~e are related by (2.21).

For a complete view of the problem we have to say something about the situation
beyond perturbation theory. We are sketchy here, for more detailed information, see
[30, §6] and [29, §4].

Even assuming a condition like (3.9) there is a gap in the reasoning, it is not clear
the range in which the perturbation scheme applies. Namely, up to what value of x
can we trust perturbation theory. For λL large, one expects confinement. In other
words, one expects the energy to become proportional to the length

(3.10) E ∼ σL ∝ σ
x

λN
with σ the string tension.

The numerical results support that σ behaves like λ2Nφ(|~e|/N) with φ(t) = t+O(t2).
In a more precise form, the squared non perturbative prediction is

(3.11) λ2x
2

4
τ 2φ2(|~e|/N)− λ2 τ

24
χ(|~e|/N)

for certain constant τ , which is dimensionless because λ2 gives the energy units, and
with χ(t) = 1 +O(t).

A natural way (again supported by the numerical results) of combining the per-
turbative and the non perturbative regimes in a single formula is simply adding both
contributions (3.7), (3.11):

(3.12)
E2(~p)

λ2
=

1

4x2
|~n|2 +

S(~e/N)

8π2x
+
x2

4
τ 2φ2(|~e|/N)− τ

24
χ(|~e|/N).
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At some small values of N , one can use lattice numerical methods to check this
claim. We reproduce here Figure 3 from the preprint of [29]. The plots corresponds
to several values of n12 and N indicated as a fraction n12/N in the left upper corner

For more on these plots, see [29]

The problem of the tachyonic instabilities arises again in a more general form.
If x is not small, the non perturbative terms are relevant. Like in (3.9), we want to
find some conditions on |~n| to detect if (3.12) could be negative for some x. The
dominant term for the non perturbative regime is the one with x2 and we can only
play with n12 that affects to the choice of ~n in the first term. The worst case scenario
(producing tachyonic instabilities) is when the sum of these terms is small and S is
negative. Using the inequality of the arithmetic and geometric means, we have

(3.13)
1

4x2
|~n|2 +

x2

4
τ 2φ2(|~e|/N) ≤ τ

2
|~n|φ(|~e|/N)

and the minimum is attached when both terms in the left hand side are equal.
Substituting this bound in (3.12) and the corresponding x where the minimum is
attached, we get the following condition for the existence of tachyonic instabilities

(3.14)
τ

2
|~n|φ(|~e|/N) +

S(~e/N)
√
τφ(~e/N)

8π2
√
|~n|

− τ

24
χ(|~e|/N) < 0.
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Of course, this is only an approximation of the actual condition that would be derived
from the minimization of (3.12).

The problematic situation resembles the perturbative case. If ~e/N is close to a
point Z2, the central term takes large negative values and they could be not balanced
by the first term. Let us consider that ~e/N is close to ~0. Using (3.3), φ(t) = t+O(t2),
χ(t) = 1 +O(t), asymptotically the condition becomes

(3.15)
τ

2

( |~n||~e|
N

)
−
√
τ

16π2

( |~n||~e|
N

)−1/2

<
τ

24
.

Then we have instabilities when the term in the parentheses is small enough. The
reasoning for ~e/N close to ~0 is applicable to any other integral point. Disregarding
the constants, the analog of (3.9) for the existence of tachyonic instabilities is

(3.16) 0 < |~n|d~e � 1 where d~e = dist
( ~e
N
,Z2
)
.

Note that (3.9) is stronger than (3.16), as it should be because now we are in a more
general framework and then the existence of instabilities is more likely.

Some natural problems in the study of instabilities

Recall from (2.21) that the quantized momentum ~n is a “multiple” of ~e. Since ~e
comes from the center symmetry ZN × ZN , we have to understand this multiple
modulo N . Of course, for |~n| smaller, (3.9) and (3.16) are more likely fulfilled. Let
us then take

(3.17) ~n =
(
Nρ
(ke2

N

)
,−Nρ

(ke1

N

))
with ρ(t) = t−

⌊
t+

1

2

⌋
and k = n12.

(Here b · c is the integral part, as usual). Note that Nρ(m/N) is the residue of m
modulo N in the interval [−N/2, N/2) and at the same time |ρ(t)| = dist(t,Z), the
triangular wave.

If we restrict ourselves to ~e = (e, 0) then the conditions (3.9) and (3.16) read

(3.18)
∣∣∣Nρ(ke

N

)
ρ
( e
N

)∣∣∣� 1 and
∣∣∣(Nρ(ke

N

))2

ρ
( e
N

)∣∣∣� 1.

Of course, we exclude the case e = 0 (equivalently, any zero value moduloN) that cor-
responds to the vacuum. The assumption ~e = (e, 0) is justified because dist(~x,Z2) is
comparable to max

(
|ρ(x1)|, |ρ(x2)|

)
with ~x = (x1, x2), like the L∞-distance (Cheby-

shev distance) and the usual distance on the plane.
The problem that we want to study boils down to know if with a suitable choice

of k = n12 we can avoid the tachyonic instabilities corresponding to (3.18) for all
e 6= 0. To consider both conditions simultaneously, we introduce

(3.19) a(N, n) = max
k∈Z

min
0<e<N

∣∣∣(Nρ(ke
N

))n
ρ
( e
N

)∣∣∣.
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The instabilities (in each context) are unavoidable if a(N, 1) � 1 and a(N, 2) � 1.
The values n > 2 are meaningless in our approach but they could appear in other
optimizations (for instance involving higher order terms). The appearance of the
sawtooth wave ρ with discontinuities at the integers, gives to the problem of the
instabilities a number theoretical twist and we shall benefit from this interplay in §3.2.

There are several problems that can be considered here. The rough general idea
is that we would like to avoid instabilities for large values of N , but we could ask
for the absence of instabilities for any N or just for a sequence Nj → ∞. In other
words, we can study limN a(N, n) or lim supN a(N, n). Even if we decide in favor of
the second possibility, one has to decide if sequences with very low density, let us
say with super-exponential growth, are admitted.

A finer issue is the size of the constants. In (3.9) the symbol � hides the range
of applicability of perturbation theory and the precise point at which we should
consider that the instability happens, depends on the size of the coupling constants.

Taking as granted the absence of instabilities for a particular N , another natural
question is to know how much freedom we have in the choice of k. In a stronger
form one may ask whether there is a method to compute the value of k at which the
maximum is attained. In a weaker and more practical form, it could be interesting
to design an algorithm to avoid the exhaustive check of every k modulo N in (3.19).
This comment also extends to e if we want a realistic method to compute a(N, n)
when N is very large. Naturally the range of k can be restricted to 0 < k < N or
0 < k < N/2 and the same for e (see below), then the trivial algorithm requires
O(N3) steps and it could be unfeasible to run it on a home computer for ranges
involving values of N like several tens of thousands. An approximation of a(N, n),
or at least some upper and lower bound, are relevant to study the ranges of the
possible coupling constants.

To sum up, some of the most natural problems and their physical motivations
are in the following list:

• If a(N, n) has a universal lower bound for n = 1 as N → ∞, then there are
not tachyonic instabilities in the model.

• If a universal lower bound holds for n = 2, then the perturbative part is
instabilities free.

• The possibility of bounds of this kind for a sequence Nj →∞ would establish
a form a defining a large N limit of the model.

• An algorithm to restrict the possibilities for k and e in (3.19) would be very
convenient to carry out numerical studies of the stability of the model.
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• An algorithm to find a k in (3.19) perhaps not reaching the maximum but
establishing a good lower bound for a(N, n) would give a way of finding for
each N a twist n12 to avoid instabilities.

3.2 A number theoretical approach

Instabilities and basic Diophantine approximation

Since the rational numbers are dense in R, in principle it seems a naive problem
approximating irrationals by rationals or, even more, rationals by rationals, but when
the denominators are bounded, there is a plethora of highly nontrivial results and
open questions. Let us see firstly that the conditions (3.18) for tachyonic instabilities,
lead to problems of this kind through a reformulation of (3.19).

By the definition (3.17) of the function ρ, we have (we use q instead of e for later
convenience)
(3.20)∣∣∣ρ( q

N

)∣∣∣ =
1

N
min
l∈Z
|q − lN | and

∣∣∣(Nρ(kq
N

))n
ρ
( q
N

)∣∣∣ = ρ
( q
N

)
min
l∈Z
|kq − lN |.

The latter expression is invariant under

(3.21) (k, l) 7→ (N − k, q − l) and (q, l) 7→ (N − q, k − l),

then (using that we can assume 0 < k < N), we can restrict ourselves to the case
0 < k, q < N/2. After these considerations, we can rephrase (3.19) as
(3.22)

a(N, n) = Nn−1 max
α

min
l/q∈F∗N−1

qn+1
∣∣α− l

q

∣∣n with α ∈
{ 0

N
,

1

N
, . . . ,

(N − 1)/2

N

}
where F∗N−1 are the Farey fractions (see below) not exceeding 1/2.

In this way the problems regarding the tachyonic instabilities lead to problems
on the approximation by rationals which is the topic of the so-called Diophantine
approximation. We review here two basic and elementary concepts in this area.

The Farey fractions FM are simply the irreducible fractions in [0, 1] with denom-
inators less or equal than M . They are usually written as an ordered list called the
Farey sequence. For instance, for M = 7

(3.23)
0

1
,

1

7
,

1

6
,

1

5
,

1
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,

1
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,
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3

7
,

1

2
,

4

7
,

3

5
,

2

3
,

5

7
,

3

4
,

4

5
,

5

6
,

6

7
,

1

1
.

Although it simple definition, the sequence presents some nontrivial properties. The
main one, indeed characterizing them, is that the difference of consecutive Farey
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fractions l/q, l′/q′ is 1/qq′. Combining this with q + q′ > M , it is possible to deduce
[49] that the union of the intervals

[
l/q − 1/qM, l/q + 1/qM

)
covers [0, 1], giving

Dirichlet’s theorem: For any α ∈ R and any M ∈ Z+

(3.24) there exists
l

q
with q < M such that

∣∣α− l

q

∣∣ < 1

qM
.

The other concept to be reviewed is that of continued fraction. This is a classic
topic that appeared in ancient times and played a role in numerical approximations
(in part retaken in the 20th century by Padé approximants). Nowadays it is not so
widely known beyond number theory.

A continued fraction is a (finite or infinite) list of integers, called partial quotients ,

(3.25) [a0; a1, a2, a3, . . . ] where a0 ∈ Z and a1, a2, a3 · · · ∈ Z+,

meaning the expression a0 + 1/
(
a1 + 1/

(
a2 + (a3 + . . . )

))
. The truncated lists

(3.26)
pn
qn

= [a0; a1, a2, a3, . . . , an]

are called convergents of the continued fractions (assumed irreducible). Very often
it is also defined p−1 = 1 and q−1 = 0.

For the numerical calculations it is important to know how to compute efficiently
the convergents of the continued fractions from the partial quotients and also the
partial quotients from the value of the continued fraction. For the first problem one
just notices that pn and qn satisfy the recurrence xj = ajxj−1 + xj−2 for j ∈ Z+. In
some situations, it is convenient to write it in matrix form

(3.27)

(
a0 1
1 0

)(
a1 1
1 0

)(
a2 1
1 0

)
· · ·
(
aj 1
1 0

)
=

(
pj pj−1

qj qj−1

)
for j ≥ 0.

Regarding the second problem, given the value x of the continued fraction, the partial
quotients are computed with the following algorithm starting with x0 = x, a0 = bxc

(3.28) xj =
1

xj−1 − aj−1

, aj = bxjc for j ≥ 1.

The irreducible fractions have finite continued fractions and their partial quotients
are actually the quotients in the Euclidean algorithm (this explains the terminology).
It is relevant to note that the number of steps of this algorithm is bounded by
less than five times the number of digits of the smaller number [49]. Then with
appropriate (and easily available) software, computing the continued fraction when
the numerator and the denominator have million of digits is a doable task in a home
computer.
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The relevant properties of the continued fractions for our problem are their ap-
proximation properties. In a wide sense, the convergents give the “best approxima-
tion” of a real number by rationals. There are two main ways of interpreting the
meaning of this assertion, called first kind approximation and second kind approxi-
mation (see [10] for the definitions). Here we focus on the second because it is more
convenient for our problem. Let α be a real number and pj/qj its convergents, then

(3.29) |qjα− pj| = min
l/q∈FM

|qα− l| for any qj ≤M < qj+1.

It is possible to give an alternative formula for the left hand side [49, §7.5]:

(3.30) qjα− pj =
(−1)j

α′j+1qj + qj−1

with α′j = [aj; aj+1, . . . ],

where aj are the partial quotients corresponding to α. If α is rational, α′j+1 is not
defined from certain j = j0 onwards, meaning that α = pj0/qj0 and there are not
more partial quotients to define α′j+1.

Continued fractions and Farey fractions are not unrelated concepts. For instance,
taking determinants in (3.27), we have |pjqj−1− qjpj−1| = 1 that gives the character-
izing property of FN on the spacing of pj−1/qj−1, pj/qj, and then they are consecutive
Farey fractions in Fqj . Reciprocally, neighboring Farey fractions have closely related
continued fractions.

Comments on the heuristics

Although we have not been able to provide mathematical proofs solving the whole
list of problems in the first part of this section, it is clear that the techniques of
Diophantine approximation give a deep insight on these problems. We start with
some intuitive ideas that can be enough for those less demanding with the rigor and
we shall finish with some complete proofs.
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It is thought that Farey fractions are approximately evenly distributed in [0, 1]. For
instance, one would expect that {k/18}18

k=0 mimics (3.23), here 18 is the number the
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pairs of consecutive fractions (the cardinality minus 1). This is not close to truth
near the extreme values 0 and 1, but it is approximately correct for many of the
points.

As a matter of fact, if dj is the difference between the j-th of the Farey sequence
FM and the j-th element of the evenly distributed model, then it is known that

(3.31)
∑
j

d2
j = O

(
M r
)

for every r > −1

is equivalent to the Riemann hypothesis (Franel’s theorem).
It is well-known [10], the asymptotics

(3.32) #FN ∼
3

π2
N2, in fact #FN =

3

π2
N2 +O(N logN).

Then in (3.22) one expects that usually |α− l/q| ≈ q−2. A weak form of it is already
implicit in (3.24) because an elementary calculation proves that the α ∈ [0, 1] that
require q < εM have measure less than 2ε

Under the hypothesis that |α − l/q| ≈ q−2 is the typical situation, for n > 1
the minimum should be reached or the greatest denominator, resulting a(N, n) com-
parable to Nn−1Nn+1

(
N−2

)n
= 1. This would rule out the possibility of tachyonic

instabilities at perturbation level taking n = 2 by (3.9). See also the comments after
(3.19).

The analysis of the case n = 1 is different but with a similar conclusion. According
to the stated heuristicsg, qn+1|α − l/q|n should remain more of less constant, but
for large q the statistical fluctuations from the model are expected to be bigger
for larger numbers. Then, most of the times the minimum should be reached for
small denominators. Although the model still gives 1 = N0 · 12 · 1−2, preventing
the instabilities from happening, this case is not as convincing as the previous one
because the model of evenly distributed Farey fractions loses accuracy for small
denominators.

The numerical calculations support the model establishing a clear difference be-
tween the cases n = 1 and n > 1 although both numerically appear as non zero lower
bounded.

Some new results

For the rigorous partial proofs, we firstly note that (3.29) implies that we can restrict
ourselves in (3.22) to l/q belonging to the convergents of a(N, n). This is a major
reduction in the computation of a(N, n), fulfilling one of our aims. It lowers the
O(N3) steps of the brute force algorithm to O(N logN), because there are O(N)
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possibilities of α to check and for each the Euclidean algorithm to compute the
convergents takes O(logN).

If we denote by [0; a1, a2, . . . , aM ] the continued fraction of each valid α, then
(3.22) and (3.29) imply

(3.33) a(N, n) = Nn−1 max
α

min
j<M

qj(
α′j+1qj + qj−1

)n with α′j = [aj; aj+1, . . . , aM ].

We consider the case n = 1. The upper bounds are not so relevant for the problem
of the instabilities but the nature of the optimal ones admits a neat solution that is
worthy to mention.

Recall the Fibonacci sequence {Fk}∞k=1 = (1, 1, 2, 3, 5, 8, . . . ) defined by the recur-
rence Fj+2 = Fj+1 + Fj. Assume that N ≥ 5 is a Fibonacci number, say N = FJ .
Thanks to (3.27), it is easy to see that

(3.34) [0; 2, 1, j − 5 times. . . . . . . . ., 1, 2] =
FJ−2

FJ
=
FJ−2

N
.

Let us call this number α0. We are going to check that a(N, 1) = α0. The convergents
are 0/1, 1/2, 1/3, 2/5, . . . , FJ−4/FJ−2 and α0. In the same way, α′1 = 1/α0, α′j =
FJ−j/FJ−j−1. Then for α = α0 the minimum is reached for j = 0 giving α0. By
(3.33), to deduce a(N, 1) = α0, it remains to prove that for any α 6= α0 (with
denominator N) there exists j0 such that

(3.35) qj0 ≤
(
α′j0+1qj0 + qj0−1

)
α0.

If α has a partial quotient greater that 2, this holds true because α0 > 1/3 and we
can take α′j0+1 = [3; . . . ] ≥ 3. Otherwise, the partial quotients of the α′j are 1 or 2.
If α 6= α0, there exists an α′j0+1 of the form [2; 1, . . . ], [2; 2, . . . ] or [2; 2] = [2; 1, 1]. In
any of these cases α′m0

> 7/3 and (3.35) is fulfilled.

Revising the proof, one notes that the assumption N = FJ was only employed to
compute the value at α = α0. The proof still applies for N > FJ except that α = α0

is not a valid value in (3.22). Then we have proved

(3.36) a(N, 1) ≤ FJ−2

FJ
if N ≥ FJ , with equality if N = FJ .

The last part leads to ask if there are infinitely many Fibonacci prime numbers.
This is an open question considered very hard (an exponential problem) in number
theory. The well-known asymptotic

(3.37) Fj ∼ rj as j →∞ with r =
1 +
√

5

2
(the golden ratio),
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gives the asymptotic bound a(N, 1) ≤ r−2 = 0.381966 . . . , N → ∞. The values
reaching the bound (3.36) appear in the numerical data as outliers because of the
exponential growth in (3.37).

For the lower bound, we appeal to Zaremba’s conjecture, this is a problem posed
in 1971 (see an overview in [43]) that remains open yet. It claims the existence of a
positive integer A with the following property:
(3.38)

for every N ∈ Z+, there exist a1, a2, . . . , aj ≤ A such that [0; a1, a2, . . . , aj] =
pj
N
.

In a more elementary way, it means that the recurrence qj+1 = aj+1qj + qj−1, q0 = 0,
q1 = 1 can capture any positive integer with a judicious choice of the aj.

Recently there was a breakthrough on (3.38). In [6] it has been proved that
A = 50 is valid for any N except for a zero density set2. A common ansatz in number
theory is that the prime numbers are random and they behave like the integers for
properties not involving the multiplicative structure. If it is applicable here, we
could conclude the absence of tachyonic instabilities in the model for almost every
N from [6]. Indeed the lower bound for a(N, 1) is a straightforward consequence of
the formula (3.33) under (3.38), because

(3.39) a(N, 1) > max
α

min
j

1

α′j+1 + 1
≥ 1

A+ 2
.

A kind of converse is also true: using α′j+1 ≥ aj, if a(N, 1) > ε then we could take
A = bε−1c in (3.38) for that N . It is thought that A = 2 for a certain (large value
of) N onwards. If this is true, one argument that we do not reproduce here here
(essentially bounding qj/qj−1 > 5/4) would lead to a(N, 1) > 5/19 for large N .

Now we treat the case n = 2. We are going to prove

(3.40) a(N, 2) >
3

π2
= 0.30396355 . . .

The method below gives a slightly better bound. Our interest here is just proving
the absence of the instabilities in the perturbative regime in the form stated in (3.9).

For each k, let

(3.41) F (k) = min
l/q

q3
∣∣∣ k
N
− l

q

∣∣∣, hence a(N, 2) = max
0<k<N

F (k).

Given k, say that the minimum in (3.41) is attained at lk/qk. We define the sets

(3.42) Cm =
{

0 < k < N : qkk − lkN = m
}

with 0 6= |m| < N/2.

2If there are EN exceptions less than N , then EN/N → 0 as N →∞.
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Note that, coming back to the original formulation of the problem (3.18), we have
m = Nρ(ke/N) with e = qk. Clearly, in this range of m,

(3.43)
∑
m

#Cm ≥ #
(⋃

m

Cm
)
≥ #{0 < k < N} = N − 1.

On the other hand, if k ∈ Cm then F (k) = N−1qk|m|2, consequently
(3.44)

qk ≤
N

m2
max
k∈Cm

F (k) ≤ N

m2
a(N, 2) that implies #

{
qk : k ∈ Cm

}
≤
⌊ N
m2

a(N, 2)
⌋
.

But we also have qk ≡ mk̄ (mod N), then
{
qk : k ∈ Cm

}
has the same cardinality

as Cm (recall 0 < qk < N). From these observations and (3.43), we get

(3.45) N−1 ≤
∑

06=|m|<N/2

⌊ N
m2

a(N, 2)
⌋
≤ 2

∞∑
m=1

N

m2
a(N, 2)−2

∑
m>
√
Na(N,2)

N

m2
a(N, 2).

The tail series can be lower bounded by 1, just approximating by the integral. Then

(3.46) N − 1 ≤ 2ζ(2)Na(N, 2)− 2

and the evaluation of ζ(2) gives (3.40).
A similar analysis in the case n > 2 without taking care of the tail series, produces

(3.47) N − 1 ≤
∑

0 6=|m|<N/2

⌊ N
mn

a(N, 2)
⌋
≤ 2ζ(n)a(N, n).

On the other hand, as mentioned before, the last convergent of α different from
itself and α are consecutive Farey fractions. If we take it as l/q in (3.22), we have
|α − l/q| = (qN)−1 and a(N, n) < 1/2 because q < N/2. In this way, we have the
upper and lower bounds

(3.48)
1

2ζ(n)

(
1−N−1

)
< a(N, n) <

1

2
for n > 1.

If N and n go to infinity, a(N, n) tends to be 1/2. The first values of the leading
constant in the left hand side are

n 1/(2ζ(n))
2 0.303963551
3 0.415953686
4 0.461969201
5 0.482193670
6 0.491476296
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3.3 Summary and conclusions

We start including a scheme summarizing the topics treated in this work and their
relations.

Gauge theory

Yang Mills theory

Lattice gauge theory

E−K model Large N

Volume independence

2+1 flat torus model

Tachyonic instabilities Diophantine approximation

TEK model

Gauge theory is the modern paradigm to study interactions in particle physics.
In this context, Yang-Mills theories have become central topics in theoretical physics.
They cover Abelian and non-Abelian generalizations of electromagnetism and it is
possible to carry out non perturbative numerical calculations with them through
discretizations known under the general name of lattice gauge theory . For the gauge
group SU(N), the limit when the number of colors N goes to infinity is consid-
ered a previous step to understand the theories with finite N . It approximates the
meson phenomenology and also reflects some expected properties of glueballs and
baryons [14]. It also seems to have some vague resemblances to some aspects of string
theory [1].

The Eguchi-Kawai model (E-K) introduced by T. Eguchi and H. Kawai involves
large N expansions and lattice gauge theory. Its main feature is the volume inde-
pendence (reduction): In the large N limit the lattice becomes irrelevant and the
configuration space can be reduced to a point. But the model was shown to be de-
fective [4] because the symmetry is spontaneously broken before reaching the limit.
To solve this issue, a new model, the twisted Eguchi-Kawai model (TEK), was intro-
duced shortly after [34] [33] by A. González-Arroyo and M. Okawa. The important
feature to prevent symmetry breaking (at least in some situations [71], see extensive
numerical calculations in [36]) was a twist in the periodic boundary conditions. It
has antecedents in the paper [66] by G. ’t Hooft. In joint works with M. Garćıa Pérez
[29] [30], the authors of the twisted Eguchi-Kawai model study volume independence
for the large N limit of Yang-Mills theories on twisted flat tori without essential
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reference to lattice gauge theory. The 2 + 1 dimensional case is treated with special
care. This is the model considered in this work.

The underlying Hilbert space in the 2+1 flat torus model is decomposed into
independent sectors through electric flux 2-vectors (representing the center symme-
try) whose components are integers modulo N . There are also topological sectors,
twist sectors , in the space of bundles with gauge group SU(N)/ZN , where ZN is the
center of SU(N) (cf. [66]). They are characterized by an integer modulo Nand it
can be interpreted as a discrete flux traversing the torus. To avoid the existence of
subgroups, one assumes N to be a prime number. One can employ the usual meth-
ods (Feynman diagrams) in the perturbative regime while in the non perturbative
regime one can appeal to dimensional analysis and the expected confinement. There
is also an expected way of matching both regimes. It is not clear if the model has
tachyonic instabilities (imaginary energies) neither in the perturbative regime nor in
general. The question we address in this work is if, for N large, the model is tachy-
onic instability free in one of the twist sectors. The existence of these instabilities
would represent a kind of phase transition for large N that would prevent volume
independence.

The conclusions of our study are as follows:

• After some reductions, the problem becomes a number theoretical problem. Es-
sentially, in a weighted form, how far apart can the fractions of denominator N
be from the fractions with smaller denominator. It appears in two flavors, one
to avoid tachyonic instabilities in the perturbative regime and another stronger
one, to avoid them in general.

• We show that in this interplay, the absence of tachyonic instabilities or any N
is equivalent to an open problem in number theory (Zaremba’s conjecture).

• It is also shown, that when N is a Fibonacci prime numbers then an optimal
bound is reached. This is the best situation to avoid instabilities.

• The numerical calculation of the expression characterizing the existence of
instability is greatly reduced using continued fractions.

• We solve the weak form of the problem, that implies that the model is free of
tachyonic instabilities in the perturbative regime in some twist sector.

We are composing a research joint paper [9] covering the above conclusions.
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Appendix A

A simple approach to
regularization

We include here an approach to the regularization of (3.1). We do not claim any
advantage of this method with respect to [29]. It just illustrates how can be obtained
in a more or less elementary or intuitive way (without appealing to Jacobi theta
functions) combining some ideas in physics, analysis and number theory.

We can write Z(s, ~x) in (3.2) as

(A.1) Z(s, ~x) = Z(s,~0)− Z(s, ~x) with Z(s, ~x) =
∑
~k 6=~0

e2πi~k·~x

|~k|s

where we have simply written sin2 α = 1
2
<(1 − eiα) and the convergence is assured

for <(s) > 2. The series Z(s,~0) is the simplest instance of Epstein zeta function and
it is known that it admits a meromorphic continuation to the whole C plane with
a simple pole at s = 2. Instead to appealing to this result [59], we proceed using
elementary arguments that can be traced back to C.F. Gauss.

Consider r2(n) = #{(a, b) ∈ Z2 : a2 + b2 = n}, the number of representations
as a sum of two squares, then

(A.2) Z(s,~0) =
∞∑
n=1

r2(n)

ns/2
=
∞∑
n=1

r2(n)− π
ns/2

+ πζ(s/2),

where, as usual, ζ is the Riemann zeta function, the analytic extension of
∑
n−s.

Note that
∑N

n=1

(
r2(n)−π) = #(C ∩Z2)−|C| where C is a circle of radius

√
N and

|C| is its area. It is clear that this difference should be small. The rather obvious
bound O(

√
N) was noticed by Gauss. With very ingenious geometrical-arithmetical

(but still elementary) arguments [40] one can get Sierpiński’s bound O
(
N1/3

)
. The

optimal bound is the content of the Gauss circle problem that is still open and under

47
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active research. Using Abel summation1 and Sierpiński’s bound in (A.2), we have
that Z(s,~0) admits a meromorphic continuation to <(s) > 2/3 with a simple pole
at s = 2 (coming from ζ) with residue 2π.

If one of the coordinates of ~x is an integer, then Z(1, ~x) strictly speaking does not

converge as an iterated sum because the sum on the corresponding coordinate of ~k is
essentially the harmonic series. In the rest of the cases, by Abel summation in both
variables, we get a converging result because S(u, v) =

∑
k1≤u e(k1x1)

∑
k2≤v e(k2x2)

is bounded. The form of (3.1) suggests a spherical summation to achieve the con-

vergence. If we group the ~k according to the value of n = k2
1 + k2

2, we have
(A.3)

Z(s, ~x) =
∞∑
n=1

1

ns/2

∑
k21+k22=n

e2πi~k·~x =
s

2

∫ ∞
1

D(u)

us/2+1
du with D(u) =

∑
k21+k22≤u

e2πi~k·~x.

In first approximation (use a smoothing and the Poisson summation formula [12]
for a rigorous treatment), for |~x| small we have

(A.4) D(u) ∼
∫∫
|~y|2≤u

e2πi~y·~x d~y =

√
u

|~x|
J1(2π|~x|

√
u).

This is a well-known calculation in Fraunhofer diffraction [5] (in fact, stretching the
analogy, D(u) is a lattice approximation to Huygens principle). Then we have

(A.5) Z(s, ~x) ∼ s

2|~x|

∫ ∞
1

u−(s+1)/2J1(2π|~x|
√
u) du = s|~x|s−2

∫ ∞
|~x|

t−sJ1(2πt) dt.

The last integral converges for <(s) > 0 and uniformly in |~x| for any 0 < <(s) < 2.
For s = 1 we have
(A.6)
Z(1, ~x) ∼ |~x|−1 as |~x| → 0, in general, Z(1, ~x) ∼ |~x− ~x0|−1 as ~x→ ~x0 ∈ Z2

because
∫∞

0
t−1J1(2πt) dt = 1 [39, 6.623]. The important point here is not the value

of the constant but the singular behavior for s = 1. If we are not interested on
the constant, the singularity can be guessed from a less rigorous but completely
elementary argument. If instead of (A.4) we use a “top-hat” approximation saying
that for |~x| < C/

√
u, D(u) is essentially the area of the circle defined by the limits

of the summation, πu, and it is negligible otherwise due to wave interference, then,
keeping in mind (A.3), one hopes

(A.7) Z(1, ~x) ∼ 1

2

∫ ∞
1

D(u)

u3/2
du ∝

∫ C2/|~x|2

1

πu

u3/2
du ∝ |~x|−1

1We mean the elementary identity
∑N
n=1 anf(n) = A(N)f(N)−

∫ N
1
A(x)f ′(x) dx with A(x) =∑

n≤x an. If A(N)f(N)→ 0 one gets
∑∞
n=1 anf(n) = −

∫∞
1
A(x)f ′(x) dx.
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that matches (A.6).
As a subproduct of our analysis, one gets the formula

(A.8) S(~x) = K − 1

4

∫ ∞
1

D(u)

u3/2
du with K =

1

2

∞∑
n=1

r2(n)− π
n1/2

+
π

2
ζ(1/2)

and D(u) =
∑
|~k|2≤u e

2πi~k·~x. It is possible to give an “explicit” formula for K if

one admits Dirichlet L-functions modulo 4, L(s), namely2 K = 2ζ(1/2)L(1/2). A
noteworthy point is that the approximation to S(~x) around ~x = ~0 is radial but S(~x)
it is not. In Appendix B we illustrate graphically the situation.

Once we know that (A.8) is meaningful, it becomes quite explicit. Note that the
integral can be calculated in each interval [n, n + 1) with n integer (because D is
constant there). In this way, S(~x) is expressed as an oscillatory sum and its rate of
convergence can be improved at will using Fourier series acceleration techniques. We
do not claim any numerical advantage with respect to the theta expression given in
(3.62) of [29], we just point out the simplicity of the expression.

A loose end in the previous argument is the convergence in (A.8). Note that
(A.4), (A.7) are based on a not totally justified cancellation that allows to avoid
large values of u.

To assure the convergence in (A.8) it would be enough D(u) = O(uα) with
α < 1/2 (assuming ~x 6∈ Z2). We give a brief argument to justify α = 1/3. It
gives some idea about the convergence rate in (A.8). Elaborating this argument, one
gets a good behavior of the accelerated series that become suitable for numerical
calculations.

Imagine that we blur the circle of summation of radius R =
√
u in a thin corona

of width R−1/3 to get a smooth profile.

u = R2

∆R ≈ R−1/3 ⇒ ∆u ≈ u1/3

R+R−1/3R

With this approximation we have D(u) = Ds(u) + O(u1/3) with Ds the smoothed
sum. Replace ~x (that it is assumed fixed and not in Z2) by ~x + ~t with ~t a variable.
Expanding Ds into Fourier series and substituting ~t = ~0, we have that Ds is a
sum of Fourier coefficients

∑
n,m anm. By the uncertainty principle, the coefficients

with
√
n2 +m2 = O

(
R1/3

)
(that do not see the “details” of size less than R−1/3) are

2Here L(1/2) is simply the converging series 1−1/2 − 3−1/2 + 5−1/2 − 7−1/2 + . . .
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essentially the same as for the non smoothed case, that by (A.4) decays as3 u1/4(n2 +
m2)−3/4 and the terms with

√
n2 +m2 � R1/3 are negligible by the smoothness

(integration by parts). In this way, D(u) is bounded by u1/4
∑

nm(n2 +m2)−3/4 with
n2 +m2 < u1/3 that is O(u1/3).

3We are using that Rx−1J1(Rx) < CR1/2x−3/2.



Appendix B

Numerical calculations

We devote this appendix to develop some topics appearing in this thesis, mainly
related to numerical calculations.

Rectangular and circular summation. In the regularization of the self-energy,
circular summation played an important role through the function introduced in the
formula (A.3)

(B.1) D(u) =
∑
|~k|2≤u

e2πi~k·~x.

There are several issues to be considered here. The most practical one is the compu-
tation of D(u) and the most theoretical, treated latter, is relative to the convergence
in (A.8).

If we fix u and consider D as a function of ~x, the behavior around the origin was
important for the analysis in §3.2 of the tachyonic instabilities. On the other hand,
in §3.1 we mentioned that iterated summation was not enough for the regularization
of the self-energy, then there is something in D that behaves better that the same
summation on rectangles and still gives the adequate representation of the singularity.
This is related to the curvature of the domain but it would be lengthy to enter into
details in this point.

Summation over |k1| ≤ 10, |k2| ≤ 10 Summation over k2
1 + k2

2 ≤ 102

We simply exemplify the situation with two graphs of f(~x) =
∑

~k e
2πi~k·~x. The
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first one with the summation restricted to a square and the second one to a circle.
Note the alignment of the bumps in the first case.

Plotting these kind graphs leads to the numerical calculation of D. In principle
there are asymptotically πu terms involved in the summation and one may suspect
that a number of operation as O(u) is optimal, but it can be lowered to O(

√
u). The

point is using the evaluation of the Dirichlet kernel (just computing the sum of a
geometric progression)

(B.2)
N∑

k=−N

e2πikx =
sin
(
π(2N + 1)x

)
sin(πx)

.

If we call D(a, x) the value of this expression with N = bac, then

(B.3) D(u) = D
(√

u, y
)

+ 2
∑

1≤k1≤
√
u

cos(2πk1x)D
(√

u− k2
1, y
)

where we have employed the formula eit + e−it = 2 cos t to reduce the range of the
summation.

It can be implemented in a simple C function as:

1 double exp sum ( double x , double y , int u){
2 double s ;
3 int k1 , j ;
4 int sqr = ( int ) s q r t (u) ;
5 s = s i n ( M PI∗(2∗ sqr+1)∗y ) / s i n (M PI∗y ) ;
6

7 for ( k1=1; k1< sqr +1; ++k1 ){
8 j = ( int ) s q r t (u−k1∗k1 ) ;
9 s += 2.0∗ cos (2 . 0∗M PI∗x∗k1 ) ∗ s i n ( M PI∗(2∗ j +1)∗y ) / s i n (M PI∗y ) ;

10 }
11 return s ;
12 }

As a matter of fact, the plots above were done storing the results generated by
a C program in a file (bumpdat a matrix containing the data in a grid) and running
the following Matlab/Octave program1

1 % load data
2 bumpdat ;
3 N = size (B, 1 ) ;
4 [X,Y] = meshgrid ( linspace ( −0 .5 ,0 .5 , N) , linspace ( −0 .5 ,0 .5 , N) ) ;
5 Z = sin ( pi ∗(2∗R+1)∗X) .∗ sin ( pi ∗(2∗R+1)∗Y) ./ sin ( pi∗X) ./ sin ( pi∗Y) ;
6 % plot

7 figure (1 )
8 surf ( linspace ( −0 .5 ,0 .5 , N) , linspace ( −0 .5 ,0 .5 , N) ,B’ , ’ EdgeColor ’ , ’ none ’ )
9 colormap jet

10 camlight l e f t ; l i g h t i n g phong
11 axis o f f
12 % plot

13 figure (2 )
14 surf (X,Y,Z , ’ EdgeColor ’ , ’ none ’ )
15 colormap jet
16 camlight l e f t ; l i g h t i n g phong
17 axis o f f

1The commands camlight left and lighting phong apparently are not still implemented in
the current version of Octave.
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Radial versus 8-fold symmetry. The function (3.1), regularized in (A.8), is not
radial but when ~x is close to a point of Z2 we are approximating it by a radial function
around that point. This may sound strange because there is nothing in the formula
(3.1) suggesting a symmetry beyond the obvious ones x 7→ ±x, y 7→ ±y, x↔ y that
are the rigid motions leaving the unit square invariant (the dihedral group D4).

To get some intuition, in the following figures we show a contour plot (a colored
zenith view) on the domain [−1/2, 1/2]× [−1/2, 1/2] of the function f

(
rθ(~x)

)
−f(~x)

with f(~x) =
∑
|~k|<10 e

2πi~k·~x, i.e. D(10) as a function of ~x, where rθ(~x) means the
result of rotating ~x under an angle θ.

θ = 0, π/2 θ = π/12, 5π/12 θ = π/6, π/3 θ = π/4

In the first figure we have, of course, the background color corresponding to the zero
level. The function f has the natural 8-fold symmetry corresponding to the invariance
of the original function under D4, that it is inherited for that of Z2. The point to
be noted here is that regardless the angle, we have a central part surrounded by 8
slices with the background color. It means that in the circle bounded by the slices,
f is in practice invariant by rotations in opposition to the kaleidoscopic behavior in
the rest of the points. According to the heuristics in (A.7) the radius of this circle is

comparable to the inverse of the maximal radius of ~k.

The data for the plots were generated using the C function that we mentioned
before, evaluated at rotated points with a loop involving

1 exp sum ( cos ( theta )∗x−y∗ s i n ( theta ) , s i n ( theta )∗x+y∗ cos ( theta ) ,R) ;

The results are stored into matrices and the actual plots were drawn with simple
Matlab/Octave lines like

1 surf ( linspace ( −0 .5 ,0 .5 , N) , linspace ( −0 .5 ,0 .5 , N) , (B2−B0) ’ , ’ EdgeColor ’ , ’ none ’ )
2 colormap jet ; view ( [ 180 90 ] ) ; axis square ; axis o f f

The numerical calculation of a(N, n). We have already seen that in (3.22) we
can also take l/q as a convergent of α by (3.29). The computation of the convergents
is as simple as the computation of the greatest common divisor. One can write easily
high speed code but for single calculations any mathematical package probably will
get the same performance.
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For instance, with the open-source and freely available mathematics software
system SageMath, one can find with the following lines the values of k = αN , l and q
(list variable klpm) at which the maximum and the minimum are reached in (3.22).

With a simple program like this we can compute a(N, n) and check that the
heuristics claimed above is experimentally true, showing a different regime for n = 1
and n > 1.

1 rmax = 0
2 for k in srange (1 , (N+1)/2) :
3 r = Nˆ2
4 L = ( con t i nu ed f r a c t i on (k/N) ) . convergents ( )
5 L [ : ]= L[ : −1 ]
6
7 for f r a c in L :
8 v = f r a c . denominator ( ) ∗( abs ( f r a c . denominator ( ) ∗k/N−f r a c . numerator ( ) ) ) ˆn
9 if v < r :

10 r = v
11 klp = (k , f r a c . numerator ( ) , f r a c . denominator ( ) )
12 if r>rmax :
13 rmax = r
14 klpm = klp

For instance, if we plot k/N in the cases n = 1, n = 2 and n = 3
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0.4

0.5
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500 1000 1500 2000 2500 3000
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0.5
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500 1000 1500 2000 2500 3000

0.1

0.2

0.3

0.4

0.5

n = 3

It reflects the heuristics that for n > 1 the minimum is reached typically by the
last but one convergent and for n = 1 the small denominator convergents are more
relevant.

Upper bounds in the case n = 1. When we plot a(N, 1) for N < 300, N < 10000
and N < 30000, we get

Note that we see a cloud of points but there are some outliers in the upper part. In
the first plot, N = 2, 5, 13, 89, 233. One could think that this is an effect of the small
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values, but in the second plot we recover a “last” outlier, at N = 1597. The third
plot shows that it was not the last, we have also N = 28657.

The explanation follows from our analysis of the upper bounds (3.36). This
outliers are Fibonacci primes. Although it is not known if there are infinitely many
of them, the exponential growth of the Fibonacci numbers explain why they are
isolated.

A conjectural property for n = 2. When we plot
(
N, a(N, 2)

)
a clear pattern

appears. The whole plot seems to be made of a kind of arcs of hyperbola

880 ≤ N < 6000 880 ≤ N < 6000

The numbers coprime to 18 are in the classes r1 = 7, r2 = 5, r3 = 1, r4 = 17,
r5 = 13, r6 = 11. Then for any N > 3 prime N ≡ rj (mod 18) for some rj.
Surprisingly, the pattern becomes very simple when subdividing N according to
congruence classes modulo 18. For instance:

880 ≤ N < 5654, N ≡ 1 (18) 880 ≤ N < 5280, N ≡ 5 (18) 880 ≤ N < 5102, N ≡ 7 (18)

The experimental data suggest the existence of a sequence of primes

N1 < N2 < N3 < N4 . . . with N6j+i ≡ ri (mod 18) for i = 1, . . . , 6,

such that a(N, 2) is increasing for the primes N ∈ (Nj, Nj+6] with N ≡ Nj (mod 18).
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We have verified the conjecture for N < 30000. The sequence Nj 1 ≤ j ≤ 72 is
listed here:

j Nj

1 151
2 347
3 631
4 881
5 1237
6 1451
7 1789
8 2003
9 2341

j Nj

10 2447
11 2857
12 3089
13 3463
14 3623
15 3943
16 4157
17 4549
18 4691

j Nj

19 5101
20 5279
21 5653
22 5813
23 6151
24 6329
25 6703
26 6917
27 7237

j Nj

28 7451
29 7789
30 7949
31 8377
32 8573
33 8929
34 8999
35 9463
36 9623

j Nj

37 9907
38 10211
39 10567
40 10709
41 11119
42 11279
43 11617
44 11831
45 12097

j Nj

46 12401
47 12757
48 12953
49 13309
50 13487
51 13807
52 13967
53 14341
54 14591

j Nj

55 14947
56 15107
57 15427
58 15641
59 16033
60 16229
61 16603
62 16763
63 17137

j Nj

64 17333
65 17599
66 17669
67 18223
68 18401
69 18793
70 18917
71 19309
72 19469

If in the initial plot, we mark the arcs and we draw the different congruence
classes with different colors, we can see the meaning of this conjecture. The upper
extreme of the arcs in the right plot above correspond to Nj. Let Mj be the smallest
prime number Mj > Nj in the same congruence class, 18 |Mj −Nj. These numbers
are indicated in the lower extreme of the arcs.

We have also checked experimentally the following facts in the same range:

• In the computation of a(Nj), the minimum is reached at the last but one
convergent in the continued fraction. This implies kp ≡ ±1 (mod Nj) with
the original notation of the problem. The sign depends on the parity of the
length of the continued fraction of k/N .

• The same applies in the computation of a(Mj).

• It seems that a(Nj)/a(Mj) = 1 + O
(
N−1
j

)
. Numerically, for Nj < 30000, it

holds
∣∣a(Nj)/a(Mj)− 1

∣∣ < 2.23/Nj.

• It seems that Nj and Mj grow more or less linearly on j.
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