
The Circle Method
Basic ideas





1 The method

Some of the most famous problems in Number Theory are additive problems (Fer-
mat’s last theorem, Goldbach conjecture...). It is just asking whether a number can
be expressed as a sum of other numbers, all of them belonging to some subsets of
integers.

Suppose that we have sequence of integers 0 ≤ a1 < a2 < a3 < . . . and we
want to know if a large positive integer N is a sum of k terms of this sequence
(repetitions are allowed). We can be even more ambitous and ask about a good
(possibly asymptotic) approximation for

rk(N) = #{(n1, n2, . . . , nk) : N = an1 + an2 + · · ·+ ank
}.

This is the kind of problems treated by circle method. The starting point is to
consider the analytic function F (z) =

∑
zan and note that

rk(N) = coeff. of zN in (F (z))k.

We can write it in a fancy way involving a complex integral:

rk(N) =
1

2πi

∫

C

(F (z))k dz

zN+1
(1.1)

where C is a circle {z ∈ C : |z| = r} with 0 < r < 1. In principle this seems rather
unnatural and useless, we can see the circle but not the method. The guidelines
for success in this approach come from a general philosophy in Analytic Number
Theory: extract arithmetical information from the singularities. For instance, the
study of the distribution of prime numbers depends heavily on the poles of ζ ′/ζ.

In (1.1) the only singularity, the high order pole at z = 0, has been introduced
rather artificially and an application of residue theorem simply dismantles the for-
mula recovering the definition of rk(N). We have to escape from z = 0. On the
other hand, in the most of the practical examples, the unit circle is the natural
boundary of the holomorphic function F , and hence it is impossible to push r be-
yond 1 in search of new singularities. In the circle method one takes r close enough
to 1 in order to feel the influence of the “main singularities” on the boundary, but
small enough to avoid uncontrolled “interferences”.

The circle method appeared firstly in a paper by Hardy and Ramanujan about
partitions [3], but it was developed by Hardy and Littlewood (it is sometimes called
Hardy-Littlewood method). They introduced the nowadays standard terminology
major arcs and minor arcs referring to a subdivision of C. In the former the
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influence of near singularities leads to a good approximated formula, while in the
latter we have to content ourselves with a bound.

In practice the definition of major and minor arcs depends on diophantine ap-
proximation properties. This is not so strange, if z tends to 1 radially there is not
any cancellation in F and this “big singularity” causes a big major arc. On the other
hand, if z tends radially to e2πia/q, the size of the singularity, if it exists, depends
on the distribution of an modulus q, but typically one hopes less cancellation and
a bigger major arc when q is small (because of lower oscillation). In this scheme,
minor arcs correspond to directions far apart from having small denominator slopes.

2 Sums of squares

One can ask about the number of representations of a (large) positive integer N as
a sum of k squares. By technically reasons (write a simpler final formula) we shall
assume that 8|k although this is not essential for the method. As square function
is not injective, (−n)2 = n2, we shall forget about an giving an ad hoc definition

rk(N) = #{(n1, n2, . . . , nk) ∈ Zk : n2
1 + n2

2 + · · ·+ n2
k = N}.

Now (1.1) reads

rk(N) =
1

2πi

∫

C

(F (z))k dz

zN+1
with F (z) =

∞∑
n=−∞

zn2

= 1 + 2
∞∑

n=1

zn2

.

A change of variable z 7→ e2πiz leads to a famous θ-function

rk(N) =

∫

L

θk(z)e−2Nπiz dz with θ(z) =
∞∑

n=−∞
e2πin2z (2.1)

and L the horizontal segment {0 ≤ <z < 1, =z = y} where r = e−2πy. We shall
choose y = 1/N . This is the natural choice because it constitutes a penalty for the
terms with n2 > N which are negligible in order to represent N as a sum of squares.

A fundamental property of θk is that it is automorphic. This means a kind of
invariance by certain (Fuchsian) group of fractional linear transformations. Namely

θk

(
az + b

4cz + d

)
= (4cz + d)k/2θk(z)
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when a, b, c, d ∈ Z and ad − 4bc = 1. It allows to pass the information from some
arcs to others. In fact, it can be proved that it is enough to study the arcs close
to 0, 1/2 and 1/4 (for the cognoscenti, these are the inequivalent cusps). Without
entering into details, it turns out that if a/q is an irreducible fraction it holds

θk(z) ∼ (qz−a)−k/2 if 4|q, θk(z) ∼ (2(qz−a))−k/2 if 26 |q and θ(z) ≈ 0 otherwise,

as qz − a → 0 with =(qz − a)−1 → −∞. If 0 ≤ a < q ≤ √
N , this is the case for

z = a/q+(u+i)/N with u/N = o
(
(q
√

N)−1
)

when N →∞. Hence for N large, the
contribution to the integral in (2.1) of this “arc” when 4|q is asymptotically equal
to

1

N

∫ √
N/q

−√N/q

(qu

N
+

qi

N

)−k/2
e−2πiaN/qe−2πi(u+i) du

= q−k/2Nk/2−1e−2πiaN/q

∫ √
N/q

−√N/q

(u + i)−k/2e−2πi(u+i) du.

If q is small enough in comparison with
√

N this is ∼ Ckq
−k/2Nk/2−1e−2πiaN/q,

otherwise the contribution is small and we can consider that we are dealing with a
minor arc. Taking into account also the case 26 |q, and adding all the contributions,
it follows

rk(N) ∼ CkN
k/2−1

∞∑
q=1

q∑
a=0

(a,q)=1

εqq
−k/2e−2πiaN/q with εq =





1 if 4|q
2−k/2 if 26 |q
0 otherwise

Some tricky (elementary but not easy) manipulations∗ allow to simplify enormously
the summation. The final result is

rk(N) ∼ AkN
k/2−1

∑

d|N
(−1)N+N/dd1−k/2.

The value of Ak can be explicitly computed in terms of the k/2-th Bernoulli number.

3 Sums of primes

One of the most impressive approaches to Goldbach conjecture is Vinogradov’s
theorem asserting that every large enough odd integer is a sum of three primes.

∗See the appendix
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This is one of the highlights of the circle method and, although the details are rather
involved, it is possible to sketch the proof according to the main lines mentioned
before.

In this case {an} is the sequence of prime numbers and we want to approximate
r3(N) for N large and odd. Therefore (1.1) reads

r3(N) =
1

2πi

∫

C

(F (z))3 dz

zN+1
with F (z) =

∑
p

zp.

In this case F has not automorphic properties and Vinogradov considered that it
is useless to preserve the whole series for F . We do not lose anything truncating F
to p ≤ N and pushing C to the unit circle. With a change of variable z = e2πix we
obtain a Fourier series version of the previous formula:

r3(N) =

∫ 1/2

−1/2

(S(x))3e−2πiNx dx with S(x) =
∑
p≤N

e2πipx.

Instead of studying the radial behavior of F , we have to face with the trigonometrical
sum S(x). It is a completely equivalent procedure but technically simpler.

Using prime number theorem, we have S(0) ∼ N/ log N . If x is smaller than
1/N then we have a similar approximation because e2πipx does not oscillate (use
Taylor expansion). And it seems that for x a little greater, the oscillation should
cause some cancellation. In fact, using prime number theorem with error term and
partial summation, it is not difficult to get an asymptotic formula reflecting this
behavior in a “major arc” I0 slighty greater that [−1/N, 1/N ]. So we have

∫

I0

(S(x))3e−2πiNx dx ∼ C
1

N

(
N

log N

)3

= C
N2

log3 N
.

In fact, it holds C = 1/2.
In the same way, if a/q is an irreducible fraction,

S(a/q) = e2πi/q
∑
p≤N

q|ap−1

1 + e4πi/q
∑
p≤N

q|ap−2

1 + e6πi/q
∑
p≤N

q|ap−3

1 + . . .

And we need an asymptotic formula for the number of primes in the arithmetic
progression qn + c. If c and q are not coprime, of course there are finitely many.
On the other hand, there are φ(q) values of c ∈ [1, q] which are coprime with q, and
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prime number theorem for arithmetic progressions asserts that prime numbers are
equidistributed in the corresponding φ(q) progressions. Hence

S(a/q) ∼ N

φ(q) log N

q∑
c=0

(c,q)=1

e2πic/q

(if the sum does not vanish). Reasoning as before, we can find a “major arc” Ia/q

around a/q slighty greater than [a/q − 1/N, a/q + 1/N ].
The problem is that the error term in prime number theorem for arithmetic

progressions is rather unknown when q varies, and we are forced to take q very
small in comparison with N (something like a logarithm). This causes minor arcs
to be really large and Vinogradov had to use very involved arguments to obtain
acceptable non trivial bounds on them. If we skip this big problem and we consider
only major arcs contribution, we get:

r3(N) ∼ 1

2

N2

log3 N

∞∑
q=1

q∑
a=0

(a,q)=1


 1

φ(q)

q∑
c=0

(c,q)=1

e2πic/q




3

e−2πiNa/q.

Again, with very tricky but elementary arguments, the sum can be evaluated ex-
plictly, giving

r3(N) ∼ 1

2

N2

log3 N

∏

p|N

(
1− 1

(p− 1)2

) ∏

p6 |N

(
1 +

1

(p− 1)3

)
.

Note that for N even, the first product vanishes ruinning the asymptotic formula.

4 Appendix

The key observation to simplify the formulas obtained by circle method in the
previous examples, is that the Ramanujan sum

cq(−N) =

q∑
a=0

(a,q)=1

e−2πiaN/q
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is multiplicative in q, i.e. cq1(−N) · cq2(−N) = cq1q2(−N) if q1 and q2 are coprimes.
This is a simple consequence of chinese remainder theorem. For each prime num-
ber p, let l be a non-negative integer such that pl|N and pl+1 6 |N . The following
elementary properties allow to evaluate cq(−N):

0 < l < m ⇒ cpm(−N) = plcpm−l(−N/pl), 0 < m ≤ l ⇒ cpm(−N) = pm − pm−1

0 = l < m ⇒ cp(−N) = −1, cpm+1(−N) = 0.

Hence for any multiplicative arithmetical function f , under suitable convergence
conditions,

∞∑
q=1

f(q)cq(−N) =
∏

p

(
1 + f(p)cp(−N) + f(p2)cp2(−N) + . . .

)
=

∏
p

Fp

and Fp is actually a finite sum.
For instance, in the case of the sum of squares, we can take f(q) = 2k/2εqq

−k/2.
Then for p 6= 2

Fp = 1 + p−k/2(p− 1) + (p2)−k/2(p2 − p) + · · ·+ (pl)−k/2(pl − pl−1)− (pl+1)−k/2pl

= (1− p−k/2)
(
1 + p1−k/2 + p2(1−k/2) + · · ·+ pl(1−k/2)

)
.

Similar manipulations lead, for p = 2, to

F2 = 1 + 21−k/2 + 22(1−k/2) + · · ·+ 2l(1−k/2) − 2 · 2l(1−k/2).

Then the product
∏Fp is, up to a factor only depending on k, the sum of the

1 − k/2 powers of the divisors of N , substracting twice the divisors containing a
maximal power of 2. Note that N +N/d is even if and only if d is even and contains
this maximal power, and the closed form

∑
d|N(−1)N+N/dd1−k/2 follows.

The case of sums of three primes is much easier. The multiplicative function is
f(q) = c3

q(1)/φ3(q), hence Fp = 1− cp(−N)/(p− 1)3, which is 1− (p− 1)−2 if p|N ,
and 1 + (p− 1)−3 if p6 |N .
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