
A Journey through

The Prime Number Theorem





Notation Along these notes we shall employ extensively Landau’s O-
notation that we recall briefly here.

The symbols O(g) and o(g) mean respectively a function f such that

lim sup
x→∞

∣∣∣∣
f(x)

g(x)

∣∣∣∣ < ∞ and lim
x→∞

f(x)

g(x)
= 0.

Note that f = O(g) is only a short way of saying |f(x)| ≤ C|g(x)| for some positive
constant C and x large enough.

If f and g has the same asymptotic behavior, i.e. lim f/g = 1, we shall write
f ∼ g. Typically we shall consider the asymptotic behavior when x →∞, otherwise
it will be explicitly indicated.

1 Warming up

The basic cornerstone in prime number distribution theory is the simple and beau-
tiful Euler’s identity :

∞∑
n=1

1

ns
=

∏
p

(
1− 1

ps

)−1

where s > 1, to assure the convergence, and p runs over the prime numbers. This
identity is equivalent to Fundamental Theorem of Arithmetic (unique factorization
into primes), just noting that the right hand side is

∏
(1 + p−s + p−2s + p−3s + . . . ).

The importance of Euler’s identity stems from establishing a link between an
analytic object, the Riemann zeta function

ζ(s) =
∞∑

n=1

1

ns
,

and an arithmetical object, prime numbers. For instance, Euler himself in 1737
realized that when s → 1+ the divergence of harmonic series implies that there are
infinitely many prime numbers.

The giant step toward the understanding of the distribution of primes was given
by Riemann who, in his celebrated memoir of 1859, considered ζ as a function of
complex variable and proved that it can be extendend to a meromorphic function
on the whole complex plane. There are quite elementary proofs of this fact. For
instance, the simple identity

(
1− 2

2s

)
ζ(s) =

∞∑
n=1

(−1)n−1

ns
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proves that ζ has a meromorphic continuation to {<s > 0} (note that |n−s −
(n + 1)−s| < C(s)|n−s−1|) with a simple pole at s = 1 with residue 1. More
generally, Taylor expansion (1−x)−s−1 =

∑
amxm with am the generalized binomial

coefficient
(

s+m−1
m

)
, implies

∞∑
m=1

2−s−mamζ(s + m) =
∞∑

n=1

(2n)−s
∑
m

am(2n)−m

=
∞∑

n=1

(2n)−s

((
1− 1

2n

)−s

− 1

)
=

(
1− 2

2s

)
ζ(s).

Hence meromorphic continuation to {<s > k} implies meromorphic continuation to
{<s > k − 1} and ζ gets extended (of course uniquely) to a holomorphic function
on C− {1} with a simple pole at s = 1 with residue 1.

Primes appear in an involved way in Euler’s identity. It would be desirable a
relation between ζ and prime numbers counting function, i.e.

π(x) =
∑
p≤x

1 = |{p ≤ x : p is a prime number}|.

But it is technically simpler to establish this connection through the, in principle
unnatural, function

ψ(x) =
∑
n≤x

Λ(n) with Λ(n) =

{
log p if n = pk with p prime

0 otherwise

Proposition 1.1 For <s > 1

−ζ ′(s)
ζ(s)

=
∞∑

n=1

Λ(n)

ns
and − ζ ′(s)

ζ(s)
− s

s− 1
= s

∫ ∞

1

(ψ(x)− x)x−s−1 dx.

Proof: By logarithmic differentiation (Euler’s favorite trick)

ζ(s) =
∏

p

(1− p−s)−1 ⇒ ζ ′(s)
ζ(s)

= −
∑

p

log p

1− p−s
p−s = −

∑
p

(
log p

ps
+

log p

p2s
+ . . .

)
.

The convergence for <s > 1 is assured comparing with a geometric series and first
formula follows.
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Now it is not hard to obtain

−ζ ′(s)
ζ(s)

=
∞∑

m=1

ψ(m)

(
1

ms
− 1

(m + 1)s

)
=

∞∑
m=1

s

∫ m+1

m

ψ(x)

xs+1
dx = s

∫ ∞

1

ψ(x)

xs+1
dx

and the second formula is proved noting that s/(s− 1) = s
∫∞

1
x−s dx. 2

We know that ζ is analytic and ζ(s) ∼ (s− 1)−1 as s → 1, hence −ζ ′(s)/ζ(s)−
s/(s− 1) → 0, and the second identity of the proposition suggests that ψ(x) should
be well approximated by x. It will be the content of the prime number theorem,
but firstly we want to know what does it mean in terms of π(x).

Proposition 1.2 Let E = E(x) be an increasing function such that ψ(x) = x +
O(E(x)), then π(x) = li(x) + O(x1/2 + E(x)/ log x) where li(x) is the integral loga-
rithm

∫ x

2
dt/ log t.

Proof: It is not difficult to prove that π(x) =
∑

2≤n≤x Λ(n)/ log n+O(x1/2) (use

that the sum equals π(x)+ 1
2
π(x1/2)+ 1

3
π(x1/3)+ . . . and the bound π(x1/n) ≤ x1/n).

On the other hand,

∑
2≤n≤x

Λ(n)

log n
=

ψ(x)

log x
+

∑
2≤n≤x

Λ(n)

∫ x

n

dt

t log2 t
=

ψ(x)

log x
+

∫ x

2

ψ(t) dt

t log2 t
,

where the second equality is just partial summation in the form a2b2 +a3b3 +a4b4 +
· · · = a2(b2 − b3) + a3(b3 − b4) + . . . with an = Λ(n) and bn =

∫ x

n
. This gives

π(x) = li(x) +
ψ(x)− x

log x
+

∫ x

2

ψ(t)− t

t log2 t
dt + O(x1/2)

because integrating by parts
∫

dt/ log t = x/ log x +
∫

dt/ log2 t. 2

According to these results, ψ(x) ∼ x translate into π(x) ∼ li(x) or equivalently
into π(x) ∼ x/ log x (l’Hôpital rule proves li(x) ∼ x/ log x). Any of these asymptotic
formulas is called Prime Number Theorem (abbreviated as PNT in the following).
Usually one wants to go beyond when estimating the size of the error term (the
function E(x) below).

Theorem 1.3 (PNT with error term) It holds

π(x) = li(x) + O(E(x))

for some function E(x) = o(li(x)).
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In this notes we shall prove this theorem with E(x) = xe−
1
6

√
log x. In fact, thanks

to previous proposition we shall forget about π(x), and prove ψ(x) = x + O(E(x)).
Even today it is not known a valid error term verifying E(x) = O(xα) for some
α < 1. As we shall see later, this is related to the so-called Riemann hypothesis.

2 PNT timelines

• 1849 Gauss conjetures that li(x) approximates π(x).
• 1851 Chebyshev proves C1x/ log x < π(x) < C2x/ log x with explicit Ci.
• 1859 Riemann writes his celebrated 8-paged memoir containing a proof of PNT

with serious gaps, using complex analysis.
• 1896 Hadamard and de la Vallée Poussin prove (independently) PNT.
• 1948 Erdős and Selberg find the first “elementary proof” of PNT.
• 1958 Vinogradov and Korobov find the best known error term.
• ????≥2003 Somebody proves Riemann Hypothesis.

3 A proof (?) of PNT for dreamers

In this section we give a fake proof à la Riemann that is non rigorous but contains
all the ingredients of the real proof. At first sight it seems that the missing points
are of technical nature and not difficult to fill, but probably subsequent pages will
show a different truth.

The starting point is the formula valid for <s > 1

−ζ ′(s)
ζ(s)

=
∞∑

n=1

Λ(n)

ns
. (3.1)

Let L be the line {<s = c}, for some 1 < c < 2, and RT , ST the “infinite
rectangles” {=s ≤ T, <s ≤ c}, {=s ≤ T, <s ≥ c}, respectively. For x > 2, x 6∈ Z,

−
∫

L

ζ ′(s)
ζ(s)

xs

s
ds =

∑
n<x

Λ(n)

∫

L

(x

n

)s ds

s
+

∑
n>x

Λ(n)

∫

L

(x

n

)s ds

s

=
∑
n<x

Λ(n) lim
T→∞

∫

∂RT

(x

n

)s ds

s
+

∑
n>x

Λ(n) lim
T→∞

∫

∂ST

(x

n

)s ds

s
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By Cauchy’s integral formula, the first integral equals 2πi (there is a simple pole
at s = 0) and the second integral equals 0 (no poles in ST ). Hence we have a neat
analytic formula for our favorite arithmetical function:

ψ(x) =
1

2πi

∫

L

f(s) ds where f(s) =
ζ ′(s)
sζ(s)

xs.

As ζ is meromorphic so is f(s). Residue theorem gives

ψ(x) = − lim
T→∞

1

2πi

∫

∂RT

ζ ′(s)
ζ(s)

xs

s
ds =

∑
s∈P

Res(f, s)

where P is the set of poles of f . Recalling that s = 1 is the unique pole of ζ, it follows
P = {0, 1} ∪ Z where Z is the set of zeros of ζ. Moreover Res(f, 0) = −ζ ′(0)/ζ(0),
Res(f, 1) = x (because ζ(s) ∼ 1/(s − 1) as s → 1); and if z ∈ Z is a zero of
multiplicity m, Res(f, z) = mxz/z. Therefore

ψ(x) = x− ζ ′(0)

ζ(0)
−

∑
z∈Z

xz

z
(3.2)

where each zero is repeated in the summation according to its multiplicity.
After this amazing formula, one can claim that the answer to any question

regarding to the distribution of prime numbers is embodied in the distribution of
the zeros of Riemann’s zeta function. In particular, if <z < 1 for every z ∈ Z, then
|xz| = x<z = o(x) and, trusting on good convergence properties of the series, PNT
follows in the form ψ(x) ∼ x.

Let us finish with an unbelievably ingenious proof due to Mertens of the missing
point Z ⊂ {<s < 1}. The convergence for <s > 1 of the series in (3.1) implies
that Z ⊂ {<s ≤ 1}. Assume that there exists a zero z of ζ with <z = 1, say
z = 1+Bi (note that after (3.2), the existence of this zero ruins PNT), and consider
g(s) = ζ3(s)ζ4(s + Bi)ζ(s + 2Bi). This is a meromorphic function with a zero at
s = 1 (because 3 < 4) and consequently, limx→1+ log |g(x)| = −∞ for x ∈ R. On
the other hand, for x > 1, using the definition of ζ and Taylor expansion:

< log g(x) = −<
∑

p

(
3 log(1− p−x)− 4 log(1− p−x−Bi)− log(1− p−x−2Bi)

)

= <
∑

p

∞∑
n=1

1

n
p−nx(3 + 4p−Bni + p−2Bni).

But the term between parenthesis is positive, because primer calculus course tech-
niques prove 3 + 4 cos α + cos(2α) ≥ 0 (or apply double-angle formulas to 2(1 +
cos α)2 > 0). Hence < log g(x) = log |g(x)| > 0 and it contradicts log |g(x)| → −∞.
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4 A nice symmetric function

We are going to prove at once that ζ extends to a meromorphic function on the
whole complex plane (this is our second proof of this fact) and that it has a kind of
symmetry with respect to the line <s = 1/2. The formula expressing this symmetry
is the well known functional equation and is formally a consequence of Poisson sum-
mation formula applied to f(x) = x−s crossing out infinities. The actual proof given
by Riemann establishes in general an interesting link between functional equations
and modular relations. Modern Number Theory is plenty of underlying modular
forms, and this explains why we have a lot of similar-looking functional equations.

Riemann’s starting point was the integral representation for <s > 0 of Γ-function
after a change of variable:

Γ(s/2) =

∫ ∞

0

ts/2−1e−t dt = πs/2ns

∫ ∞

0

ts/2−1e−πn2t dt.

Summing on n, for <s > 1,

π−s/2Γ(s/2)ζ(s) =
1

2

∫ ∞

0

ts/2−1(θ(t)− 1) dt where θ(t) =
∞∑

n=−∞
e−πn2t.

Now we can apply comfortably Poisson summation formula through the closed
(modular) relation∗ θ(t) = t−1/2θ(1/t). It allows to transform the part

∫ 1

0
of the

integration which is reponsible of the lack of convergence for <s ≤ 1.

∫ 1

0

ts/2−1(θ(t)− 1) dt =

∫ 1

0

ts/2−1(t−1/2θ(1/t)− 1) dt =

∫ ∞

1

t−s/2−1(t1/2θ(t)− 1) dt.

Substituting, after some calculations, we obtain

π−s/2Γ(s/2)ζ(s) =
1

s(s− 1)
+

1

2

∫ ∞

1

(ts/2−1 + t−s/2−1/2)(θ(t)− 1) dt. (4.1)

The right hand side defines a meromorphic function with s = 0, 1 as only poles.
Moreover, it remains invariant under the change s 7→ 1−s. Hence ζ is a meromorphic
function and satisfies the functional equation

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1− s)/2)ζ(1− s). (4.2)

∗See the appendix.
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Following (partially) Riemann, we can introduce the entire function

ξ(s) =
1

2
s(s− 1)π−s/2Γ(s/2)ζ(s)

and functional equation (4.2) reduces to

ξ(s) = ξ(1− s).

From (4.1) we conclude (again) that ζ has a single pole at s = 1 with residue 1.
Using that Γ is holomorphic up to simples poles at 0, −1, −2, −3 . . . , (4.2) proves
ζ is holomorphic on C − {1} and has simple zeros at s = −2, −4, −6, . . . . These
zeros are called trivial zeros. As π−s/2Γ(s/2)ζ(s) does not vanish for <s > 1, there
are not other zeros in <s < 0, hence non-trivial zeros are in the so called critical
strip 0 ≤ <s ≤ 1. Summarizing:

{Poles of ζ} = {1} {Zeros of ζ} = 2Z− ∪ {Non-trivial zeros}
{Poles of ξ} = ∅ {Zeros of ξ} = {Non-trivial zeros of ζ}

5 Zeros here and there

The fake proof suggests that the core of prime number distribution theory is the
study of the zeros of ζ. We have already separated the “trivial zeros” 2Z−, and the
whole problem is to understand the zeros in the critical strip 0 ≤ <s ≤ 1. We shall
denote with ρ each of these non-trivial zeros.

Some basic results in Complex Analysis play an important role in the subsequent
study. From the historical point of view, it can be claimed that a part of the basis
of Complex Analysis was created in connection with the proof of PNT.

Our first result is a neat relation between ζ ′/ζ and the non-trivial zeros.

Theorem 5.1 For a certain constant C0, it holds

ζ ′(s)
ζ(s)

= C0 − 1

s− 1
− Γ′(s/2 + 1)

2Γ(s/2 + 1)
+

∑
ρ

(
1

s− ρ
+

1

ρ

)
. (5.1)

Proof: Comparing (4.1) with the definition of Γ (use θ(t) − 1 = O(e−t) and
|tα| ≤ t|α|), it is deduced

|ξ(s)| = O((1 + |s|2)Γ(|s|+ 1)/2)) = O(eK|s| log(|s|+1)).
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Hence ξ is an entire function of order one, and according to Hadamard finite order
function theory∗, there exists a factorization

ξ(s) = eA+Bs
∏

ρ

(1− s/ρ)es/ρ

for certain constants A, B. Calculating the logarithmic derivative ξ′/ξ with this
formula and the definition of ξ, the theorem follows. 2

A superabundance of zeros could give a too large error term in PNT. The fol-
lowing result shows that it is not the case.

Proposition 5.2 Let N(T ) be the number of non-trivial zeros ρ, counted with mul-
tiplicity, such that |=ρ| ≤ T . Then

N(T + 1)−N(T ) = O(log T ) and N(T ) = O(T log T ).

Proof: Of course the latter formula is a straightforward consequence of the
former. Using (5.1) with s = 2 + iT , T ≥ 2, we obtain

∑
ρ((s − ρ)−1 + ρ−1) =

O(log T ). Taking real parts:

O(log T ) = <
∑

ρ=β+iγ

(
1

2− β + i(T − γ)
+

1

β + iγ

)
≥

∑
ρ

1

4 + (T − γ)2
.

And it implies N(T + 1)−N(T ) = O(log T ). 2

Although it is not necessary in our proof of PNT, with some extra effort (using
argument principle) previous result can be sharpened as follows:

Theorem 5.3 It holds the asymptotic formula

N(T ) =
T

2π
log

T

2π
− T

2π
+ O(log T ).

The identity (5.1) show that the value of ζ ′(s)/ζ(s) is greatly influenced by the
closest zeros to s. The next result quantifies this phenomenon.

∗See the Appendix.
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Proposition 5.4 We have

ζ ′(s)
ζ(s)

=
∑

ρ : |s−ρ|<1

(s− ρ)−1 + O(log |t|)

with a uniform O-constant for s = σ + it, σ ≥ −1, |t| ≥ 2 and s 6∈ Z.

Proof: Substracting (5.1) for s = σ + it and s = 2 + it,

ζ ′(s)
ζ(s)

=
∑

ρ

(
1

s− ρ
− 1

2 + it− ρ

)
+ O(log |t|).

For |s− ρ| > 1, say ρ = β + iγ,
∣∣∣∣

1

s− ρ
− 1

2 + it− ρ

∣∣∣∣ =
2− σ

|s− ρ||2 + it− ρ| ≤ C
1

4 + (t− γ)2

with C an absolute constant. We have already seen that the last term contributes
O(log |t|) when summing over ρ. On the other hand,

∑
|s−ρ|<1(2 + it − ρ)−1 =

O(log |t|) because there are O(log |t|) zeros ρ = β + iγ with γ ∈ [t− 1, t + 1]. 2

We have studied so far “vertical distribution” of the zeros, but in order to prove
PNT we need some horizontal control, namely we want to separate the real part of
the zeros from <s = 1.

Theorem 5.5 There exists a positive constant C such that ζ does not vanish for
s = σ + it in the region

σ > 1− 1

35 log(|t|+ C)
.

Proof: From (3.1) and Mertens’ argument (see the end of the fake proof), if
ρ0 = A + Bi is a non-trivial zero, for σ > 1

−3
ζ ′(σ)

ζ(σ)
− 4<ζ ′(σ + Bi)

ζ(σ + Bi)
−<ζ ′(σ + 2Bi)

ζ(σ + 2Bi)
≥ 0. (5.2)

Note that for s = σ + iB with σ > 1 and any non-trivial zero ρ, it holds <(s −
ρ)−1, <ρ−1 > 0. Taking this into account, by (5.1), for C large enough

−<ζ ′(σ + Bi)

ζ(σ + Bi)
≤ −<(s−ρ0)

−1+
1

2
log(|B|+C), −<ζ ′(σ + 2Bi)

ζ(σ + 2Bi)
≤ 1

2
log(|B|+C).
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On the other hand, −ζ(s)/ζ(s) ∼ (s − 1)−1 as s → 1, implies that −ζ(σ)/ζ(σ) <
1.01/(σ− 1) for σ in some interval (1, 1+ ε]. Substituting these inequalities in (5.2)

3.03

σ − 1
+

4

σ − A
+

5

2
log(|B|+ C) > 0.

Choose σ = 1+2/(11 log(|B|+C)) (suppose C large enough to assure σ ∈ (1, 1+ε]).
If A > 1− 1/(35 log(|B|+ C)), we get a contradiction. 2

6 The real (complex) proof

The first gap in our fake proof of PNT is the application of Cauchy’s integral formula
to some suspicious infinite regions. For each T > 2, let LT = L ∩ {=s ≤ T}, i.e.
LT is the segment connecting c − iT with c + iT . Consider x > 2 far away from
integers, say Frac(x) = 1/2. Exponential decay of (x/n)s is enough to deduce:

ψ(x) =
1

2πi

∑
n<x

Λ(n)

∫

∂RT

(x

n

)s ds

s
+

1

2πi

∑
n>x

Λ(n)

∫

∂ST

(x

n

)s ds

s
.

(Remember that RT = {=s ≤ T, <s ≤ c} and ST = {=s ≤ T, <s ≥ c}). It is not
hard to prove for t > 0, t 6= 1, that

∫ ±∞+iT

c+iT

ts

s
ds = O

(
tc

T | log t|
)

.

Using this bound, we obtain (note that |n− x| < x/2 ⇒ (x/n)c = O(1))

ψ(x) =
1

2πi

∫

LT

f(s) ds + O


 1

T

∑

|n−x|<x/2

Λ(n)

| log(x/n)| +
xc

T

∑

|n−x|≥x/2

Λ(n)

nc| log(x/n)|




(Remember that f(s) = − ζ′(s)
ζ(s)

xs

s
=

∑
Λ(n)

(
x
n

)s 1
s
). Taylor expansion leads to

| log(x/n)|−1 = O(x/|n−x|) and the first term in the error contributes O( x
T

log2 x).
On the other hand the second sum is O(|ζ ′(c)/ζ(c)|) = O((c − 1)−1). If we choose
c = 1 + 1/ log x to clear up the calculations, we get

ψ(x) =
1

2πi

∫

LT

f(s) ds + O
( x

T
log2 x

)
.
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By Proposition 5.2 it is possible to choose lines =s = ±T , for T on each fixed
interval of length one, separated from the zeros at least C/ log T , for some absolute
constant C. Proposition 5.3 implies |ζ ′/ζ| = O(log2 T ) on these lines for <s ≥ −1.
Consequently ∫ c−iT

−∞−iT

+

∫ −∞+iT

c+iT

f(s) ds = O
( x

T
log2 T

)

and

ψ(x) =
1

2πi

∫

∂RT

f(s) ds + O
( x

T
log2(xT )

)
.

Residue theorem gives

ψ(x) = x− ζ ′(0)

ζ(0)
+

∞∑
n=1

x−2n

2n
−

∑

|=ρ|<T

xρ

ρ
+ O

( x

T
log2(xT )

)
. (6.1)

When T → ∞ this gives the so called explicit formula, the analog of (3.2). It is
useless (because of the conditional convergence) but wonderful:

ψ(x) = x− ζ ′(0)

ζ(0)
+

1

2
log(1− x−2)−

∑
ρ

xρ

ρ
.

Note that ψ(x + h) − ψ(x) ≤ log(x + 1) for every h ∈ [0, 1], then adding an
extra O(log x) term in (6.1), it holds true without restrictions on Frac(x). Cleaning
negligible terms, we have

ψ(x) = x−
∑

|=ρ|<T

xρ

ρ
+ O

( x

T
log2(xT ) + log x

)
.

By Theorem 5.5 there are no zeros with <ρ > 1− 1/(35 log(T + C)) and |=ρ| ≤ T ,
and by Proposition 5.2 there are O(log N) with N ≤ |=ρ| ≤ N + 1. Hence

∑

|=ρ|<T

xρ

ρ
= O

(∑
N≤T

log N

N
x1−1/(35 log(T+C))

)
= O

(
x1−1/(35 log(T+C)) log2 T

)
.

Choosing T = e0.17
√

log x and substituting, we obtain finally

ψ(x) = x + O
(
x e−

1
6

√
log x

)

indeed something slighty better. PNT is (at last) proved.

11



7 Epilogue: Riemann hypothesis

By the second formula in Proposition 1.1, if ψ(x) = x+O(xβ) for every β > α, then
−ζ ′(s)/ζ(s)− s/(s− 1) is holomorphic on <s > α, in particular all the non-trivial
zeros verify 1 − α ≤ <ρ ≤ α. Hence the best scenario occurs when α = 1/2, i.e.
when the non-trivial zeros keep in single file.

Riemann hypothesis: If ρ is a non-trivial zero of ζ then <s = 1/2.

From the anlytical point of view this is a very strange conjecture because there
are no known reasons motivating the lining up of the zeros. And it is even more
strange taking into account that in Number Theory there is a huge family of zeta-like
complex analytical functions that apparently share the same property.

It is known by extensive numerical analysis that more than the first 1011 non-
trivial zeros of the Riemann zeta function verify Riemann hypothesis, but so far we
do not even know how to prove <ρ ≤ δ for some δ < 1 and every non-trivial zero ρ.

Although, after more than 140 years, we are desperately far from Riemann
hypothesis, in the meantime some theorems have sprung up about the distribution of
the zeros that Riemann probably would like. We shall only mention three according
to their strength:

(Hardy) There are infinitely many zeros of ζ with real part 1/2.
(Bohr, Landau et al.) The “density” of zeros on <s ≥ α for any α > 1/2 is

arbitrarily small in comparison with the density on <s ≥ 1/2.
(Selberg) A positive proportion of the zeros lay on the line <s = 1/2.

8 Appendix

In this appendix we shall refresh some topics related to Complex Analysis that we
have used in previous pages.

Gamma function:
Gamma function is a kind of natural analytic extension of factorials to complex

plane. For <s > 0 it is defined by the integral formula

Γ(s) =

∫ ∞

0

ts−1e−t dt.

Integrating by parts, Γ(n) = (n − 1)! for n ∈ Z+ and Γ(s + 1) = sΓ(s) in general.
This functional equation allows to extend Γ to a meromorphic function with simple
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poles at s = 0,−1,−2, . . . . In particular Γ(s) ∼ s−1 when s → 0. Far away
from these poles, say for instance on C − ⋃

B0.1(−n), Γ(s) = O
(
e|s| log |s|) and

Γ′(s)/Γ(s) = O(log |s|). Indeed it is possible to replace these bounds by asymptotic
formulas (cf. Stirling’s formula).

Finite order functions:
Hadamard’s finite order function theory allows to factorize entire functions, un-

der some growth condition, into something close to linear factors. Roughly speaking,
it is a kind of Fundamental Theorem of Algebra for entire functions. In the order
one case, it asserts that for an entire function f satisfying |f(z)| = O

(
e|z|

α)
for every

α > 1, it holds

f(z) = eA+Bz
∏

(1− z/zn)ez/zn

where A and B are constants and zn runs over the zeros of f . Moreover the (possibly
infinite) product is absolutely convergent.

Poisson summation:
If f is smooth enough (say for instance |f |, |f ′| and |f ′′| integrable) then Poisson

summation formula reads
∞∑

n=−∞
f(n) =

∞∑
n=−∞

∫ ∞

−∞
f(x)e−2πinx dx.

Choosing f(x) = e−πtx2
where t > 0 is a parameter, one concludes the functional

equation for θ-function, θ(t) = t−1/2θ(1/t).
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