[Los problemas con un número entre corchetes están adaptados de los correspondientes en los apuntes de José Luis Fernández]

- 1) Halla $f_n: \Omega = \{z: \Re(z) > 0\} \longrightarrow \mathbb{C}$ tal que $f_n \rightrightarrows f$ sobre compactos de Ω pero que no converja uniformemente en todo Ω .
- 2) [5.6.3] Para $f_n(z) = \tan(nz)$, estudia si la sucesión $\{f_n\}_{n=1}^{\infty}$ converge uniformemente sobre los compactos del semiplano inferior $\{\Im(z) < 0\}$.
- 3) [5.6.1] Demuestra que si $\{f_n\}_{n=1}^{\infty}$ (holomorfas en Ω) converge uniformemente en cada circunferencia incluida en Ω a cierta $f:\Omega \longrightarrow \mathbb{C}$ holomorfa, entonces $f_n \rightrightarrows f$ sobre cualquier compacto en Ω . Indicación: Utiliza la fórmula integral de Cauchy.
 - 4) Prueba que $F(z) = \sum_{n=0}^{\infty} n^2 e^{n/z}$ es holomorfa en $\{\Re(z) < 0\}$ y halla F(-1).
- **5)** Prueba que si $|a_n| \le \log^{2018} n$ la serie $\sum_{n=1}^{\infty} a_n n^{-z}$ converge y define una función holomorfa en $\{\Re(z) > 1\}$.
- **6)** Halla $f_n : \mathbb{D} \longrightarrow \mathbb{C}$ con $f_n \rightrightarrows f$ sobre compactos de modo que cada f_n tenga algún cero en \mathbb{D} y que f no tenga ninguno. Indicación: Haz que los ceros de las f_n vayan hacia $\partial \mathbb{D}$.
- 7) Prueba $\zeta(-1) = -1/12$ aplicando $\operatorname{Res}(z^{-2}(e^z 1)^{-1}, 0) = 1/12$ a la integral sobre C_δ . Si uno utilizase la serie, esto daría el absurdo $1 + 2 + 3 + 4 + \cdots = -1/12$ que es una fórmula que envió Ramanujan a un matemático como uno de sus descubrimientos.
- 8) Demuestra la fórmula $\zeta(s) = s/(s-1) s \int_1^\infty x^{-s-1} \operatorname{Frac}(x) \, dx$ donde Frac es la parte fraccionaria y explica por qué prueba la extensión meromorfa a $\Re(s) > 0$ con un único polo en s = 1. Indicación: Integra en [n, n+1] y usa $\sum n(n+1)^{-s} = \sum (n+1)^{1-s} \sum (n+1)^{-s}$.
- 9) Integrando por partes prueba $\Gamma(s+1)=s\Gamma(s)$. Halla también una fórmula simple para el residuo de $\Gamma(s)$ en s=-2018.
- 10) En la identidad $\Gamma(s) \int_0^\infty x^{w-1} (1+x)^{-s} dx = \int_0^\infty \int_0^\infty x^{w-1} (1+x)^{-s} y^{s-1} e^{-y} dx dy$, haz el cambio x = u/v, y = u+v para deducir que es igual a $\Gamma(s-w)\Gamma(w)$ con $\Re(w)$, $\Re(s-w) > 0$.
- 11) [5.6.12] Demuestra que si \mathcal{F} es una familia normal, entonces $\mathcal{F}' = \{f' : f \in \mathcal{F}\}$ también lo es y busca un contraejemplo para el recíproco.
- 12) Dada f entera y $a \in \mathbb{C}$ arbitrario, considera la familia $\mathcal{F} = \{f(a+nz) : n \in \mathbb{Z}^+\}$. Utilizando el teorema de Montel y el ejercicio anterior deduce que si f estuviera acotada entonces f'(a) = 0, consiguiendo de esta manera una prueba enrevesada del teorema de Liouville.
- 13) [5.6.14] Sea \mathcal{F} la familia de funciones holomorfas $f: \mathbb{D} \longrightarrow \mathbb{C}$ tales que $|f^{(n)}(0)| < 2018$ (por ejemplo la exponencial). Demuestra que \mathcal{F} es una familia normal. Indicación: Piensa en su serie de Taylor.