CRYPTOGRAPHY. UAM 2010-2011 1

Lenstra’s elliptic curve factorization algorithm

Repeated duplication method. To compute nP the obvious method is to apply n times
the group law, i.e. nP = P + ntimes . p

def easy_mult(n,P):
result = ’0°
for i in range(n):
result = g_1(P, result)
return result

But this is useless whn n is very large, say hundred of digits.
The following program applies the analog of the repeated squaring alogirthm in F,. It is
actually the same algorithm changing the multiplicative notation by the additive notation.

def mult_2(n,P):
result = ’0’
pow_2P = P
while n!=0:
if (nk2)==1:
result = g_1(pow_2P, result)
n //=2
pow_2P = g_1(pow_2P, pow_2P)
return result

Comparing both algorithm one have to reject the first one even for not very high values
of n

E = EllipticCurve (GF(1000000007),[-6,5])
P = E([2,1])

a = Mod(-6,5)

b = Mod(5,5)

P=[2,1]

time easy_mult (1076,P)
time mult_2(10°6,P)

gives

Time: CPU 8.97 s, Wall: 9.25 s
Time: CPU 0.00 s, Wall: 0.00 s

Factorization. In principle it is not possible to define an elliptic curve over a ring if we can
save the group law. In fact the following line in Sage

E = EllipticCurve (GF(10403),[-6,5])

(note that 10403 is not prime) raises the error

CRYPTOGRAPHY. UAM 2010-2011 2

ValueError: the order of a finite field must be a prime power

Let us see in an example what happens when we apply our function to add points in the
ring 7/10403Z.

Example:
#
Example P=(0,1) y~2= x"3+x+1, n = 10403
#
P= [0,1]

a= Mod (1, 10403)
print mult_2(factorial(7), P)

def mult_2(n,P):
result = ’0’
pow_2P = P
while n!=0:
if (n%2)==1:
result = g_1(pow_2P, result)
n //=2
pow_2P = g_1(pow_2P, pow_2P)
return result

def g_1(C P, Q)

if P == °0°
return Q

if Q == ’°0°
return P

if (P[0] == Q[0]) and (P[1] == -Q[1]1):
return 0’

if (P[0] 0]1) and (P[1] == Q[11):

== Q[
m = (3*P[0]"2+a)/2/P[1]
else:
m = (Q[1]1-P[1])/(Q[0]-P[0])
x3 = m~2-P[0]-Q[0]
return [x3,m*x(P[0]-x3)-P[1]]
Introducing at the beginning of the definition of the function the sentnece
print P,Q

we learn that the error appears when adding

[9696, 506] [7878, 10200]

The reason is that when computing the slope m we have to invert Q[0]-P[0] = —1818 and
this is not possible because 1818 and n = 10403 are not coprime.

CRYPTOGRAPHY. UAM 2010-2011 3

Lenstra elliptic curve factorization It is the analog of Pollard’s p — 1 method. It consists
in computing 1!P,2!P, ..., B!P in an elliptic curve E (mod n). If an error arises in the group
law then it can be employed to get a factor of n. The power of the method is based on the
fact that if the the factor is trivial or no error appear one can easily change the elliptic curve.
In some sense is like a Pollard’s p — 1 method with varying abelian gropus.

Firstly we have to hack the group law to detect the cases in which the group law is not
well-defined. We employ the following notation for the points on E. The last case is the output
corresponding to an error in the group law.

#
"Normal" points [x,y,1]

Point at infinity [0,1,0]

#
#
Fake points [0,0,d] with d not coprime to the modulus.
#

The modified group law function is:

#
Group law
#
def g_1_.1(P, Q, a):
if P[2] !'= 1:
if P[1]==1:

return Q
return P
if Q[2] !'= 1:
if Q[1]==1:
return P
return Q

if (P[0] == Q[0]) and (P[1] == -Q[1]):
return [0,1,0]

if (P[0] == Q[0]) and (P[1] == Q[1]):
if P[1].is_unit ()==False:
return [0,0,P[1]]
m = (3*xP[0]"2+a)/2/P[1]
else:
if (Q[0]-P[0]).is_unit ()==False:
return [0,0,Q[0]-P[0]]
m = (Q[1]1-P[1]1)/C(QL0o]l-P[0])
x3 = m~2-P[0]-Q[0]
return [x3,m*x(P[0]-x3)-P[1],1]

and the modified multiplication function is:

CRYPTOGRAPHY. UAM 2010-2011 4

Same multiplication routine
changing 0 and g_1 by g_1_1

Qo oHHHH

ef mult_2_1(n,P,a):
result = [0,1,0]
pow_2P = P
while n!=0:
if (n%2)==1:
result = g_1_1(pow_2P, result, a)

pow_2P = g 1_1(pow_2P, pow_2P, a)
return result

For instance, the result of

g_1_1([9696, 506,1],[7878, 10200,1],1)
is now

[0, 0, -1818]

We integrate this functions in Lenstra’s algorithm. We use y?> = 22 + ax + 1 as vaying
elliptic curve, because for any value of a the point P = (0,1) (that we take as starting point)
is on it.

#
Lenstra’s algorithm
#
def lenstra(n,bound_a,bound_b):
if is_prime(n):
print n,’is prime’
return n
if n¥%2==0:
return 2
if n¥%3==0:
return 3

for a in range(bound_a):
Consider only elliptic curves
if Mod (4*a~3+27,n)==0:
continue

f_point = [Mod(0,n),Mod(1,n),1]
for b in range (bound_b):
compute factorial
f_point = mult_2_1(b+1,f_point,a)
if f_point [2]==0:
break
if f_point[2]>1:
print a,b
return gcd(f_point[2], n)
print ’Increase the values of bound_a and bound_b’

CRYPTOGRAPHY. UAM 2010-2011 5

The parameters bound_a and bound_b in the function lenstra give the upper bound for
a, the number of elliptic curves, and B, the number of multiplications n!P. Of course the
algorithm is stronger but slower taking large values of bound_a and bound_b.

For example

therea are twenty-one 3’s in the first example
time print lenstra(1333333333333333333333,200,100)
time print lenstra((1078+7)*(9%10°8+11),200,100)
time print lenstra(10°20+699,200,100)

time print lenstra(10°30+427,300,1000)

In a standard computer the results have been

43 78 -> 4363363

Time: CPU 1.02 s, Wall: 1.04 s
74 30 -> 900000011

Time: CPU 1.63 s, Wall: 1.66 s
156 20 -> 32935987639

Time: CPU 3.70 s, Wall: 3.74 s
223 756 -> 852759062050499

Time: CPU 89.23 s, Wall: 90.27 s

The algorithm has its limitations,
time print lenstra(next_prime(10718)*next_prime (107°19),300,3000)
produces

Increase the values of bound_a and bound_b
None
Time: CPU 421.03 s, Wall: 423.92 s

Appendix. It is possible to program Lenstra’s algorithm using only Sage functions but it
requires some deeper knowledge of Python and Sage. Essentially one cheats Sage forcing it
to consider Z/nZ as a field and one employs the exception handling in Python to redirect the
flow after an error.

The following program was written by Professor W. Stein, the lead developer of Sage, and
included in his book Elementary Number Theory: Primes, Congruences, and Secrets.

Note that it introduces a twist with respect to our previous program, now the elliptic curve
is chose at random.

CRYPTOGRAPHY. UAM 2010-2011 6

def ecm(N, B=10"3, trials=10):
m = prod([p~int(math.log(B)/math.log(p))
for p in prime_range(B+1)])
R = Integers(N)
Make Sage think that R is a field:
R.is_field = lambda : True
for _ in range(trials):
while True:
a = R.random_element ()
if gcd(4*xa.lift()"3 + 27, N) == 1: break
try:
m * EllipticCurve([a, 1]1)([0,1])
except ZeroDivisionError, msg:

msg: "Inverse of <int> does not exist"
return gcd(Integer (str(msg).split () [2]), N)
return 1
Now
time print ecm(1333333333333333333333,200,100)
time print ecm((1078+7)*(9%x10°8+11) ,200,100)
time print ecm(10°20+699,200,100)
time print ecm(10°30+427,300,1000)
gives
4363363
Time: CPU 0.79 s, Wall: 0.89 s
100000007
Time: CPU 0.90 s, Wall: 1.00 s
3036192541

Time: CPU 0.96 s, Wall: 1.06 s
1
Time: CPU 47.94 s, Wall: 49.03 s

The random choice of the elliptic curve can give different results when running the program
several times.

