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Elementary Number Theory

Definition: Given a, b ∈ Z not simultaneously zero their greatest common divisor, denoted
gcd(a, b) or (a, b) is the largest integer dividing both a and b. If gcd(a, b) = 1 then a and b are
said to be relatively prime or coprime.

Proposition: Given a and b as before, there exist x, y ∈ Z such that

ax + by = gcd(a, b).

Sketch of the proof : Use Euclidean algorithm. i.e., note that a = bc + r ⇒ gcd(a, b) =
gcd(b, r) and iterate this fact. 2

Important remark: The computation of gcd(a, b) and the computation of x and y require
a quantity of operations comparable to the number of digits. This is very quick for a computer
with the numbers employed in actual cryptography (hundreds of digits).

Sage commands: gcd(a,b) or gcd([list]). The extended version xgcd(a,b) gives the
gcd and x and y in the proposition.

sage: gcd (18 ,42)
6
sage: gcd ([18 ,42 ,14])
2
sage: xgcd (18 ,42)
(6, -2, 1)

Definition: We say that a is congruent to b modulo m ∈ Z+, denoted a ≡ b (mod m) or
a ≡ b (m), if m | a − b.

Recall: the symbol | means “divides”. Its negation is -.

For a fixed m the congruence defines an equivalence relation. The classes are denoted by
Z/mZ. This set inherits the + and × operations from Z. Note that a ∈ Z/mZ represent
the set of all number differing from a in a multiple of m. In some cases we replace the heavy
notation a by a.
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Proposition: An element a ∈ Z/mZ has a multiplicative inverse if and only if gcd(a,m) = 1.

Sketch of the proof : Note that 1 = ax + my means a · x = 1 in Z/mZ. 2

Sage commands: n.inverse_mod(m). In some sense Mod(a,n) means a.

sage: 10. inverse_mod (13)
4
sage: Mod (4*10 ,13)
1
sage: Mod (4 ,13)* Mod (10 ,13)
1

Definition: The elements of Z/mZ having multiplicative inverse are called units. The Euler
ϕ-function is the function that assigns to each m the number of units in Z/mZ.

Fact: It is not difficult to prove that if m = pα1
1 pα2

2 · · · pαk
k is the prime factorization of m

then

ϕ(m) =
k∏

i=1

pαi−1
i (pi − 1) = m

∏
p|m

(
1 − 1

p

)
.

Sage commands: euler_phi(m). This function involves the factorization of m hence it is
in general very hard for the computer when m has hundreds of digits.

sage: euler_phi (39)
24
sage: time euler_phi (10^120+1)
CPU times: user 1494.33 s, sys: 1.20 s, total: 1495.53 s
Wall time: 1504.81 s

Proposition (Chinese Remainder Theorem): Given m1 and m2 relatively prime, there
exists x such that {

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)

Indeed x is unique if we impose 0 ≤ x < m1m2.

Sketch of the proof : Consider x = a1M2m2 + a2M1m1 where M1 is the inverse of m1

modulo m2 and M2 is the inverse of m2 modulo m1. 2

Sage commands: crt(a_1,a_2,m_1,m_2).

sage: crt(4,6,7,11)
39
sage: Mod(39,7)
4
sage: Mod (39 ,11)
6



Cryptography. UAM 2010-2011 3

A little of Algebra (see actual definitions in your favorite book):
An abelian group is a set G with an operation that behaves as the addition in Z, i.e, satisfies

commutativity, associativity, existence of identity element and existence of inverse element.

The units of Z/mZ form a group with respect to multiplication, the group of units. The
entire set Z/mZ is an abelian group when endowed with addition.

One of the most basic theorems in group theory is Lagrange Theorem, saying that if H ⊂ G
are finite groups (with the same operation) then #H divides #G.

In a finite abelian group the powers of an element (repeated operation of an element with
itself) form a group. Its cardinality is called the order of the element. In other words the order
is the minimal k ∈ Z+ such that it takes k self-operations over a to reach the identity element.

Proposition (Euler-Fermat congruence): Let a and m be relatively prime. then

aϕ(m) ≡ 1 (mod m).

Proof : According to Lagrange Theorem applied to the units of Z/mZ we have ak ≡ 1 (mod m)

for some k dividing the cardinality of the group which is ϕ(m). 2

For p prime the units of Z/pZ are all the classes except 0 then the previous result reads

ap−1 ≡ 1 (mod p) for every p - a.

This is called Fermat’s little theorem.

Definition: It can be proved (it is elementary but not simple) that there are some elements
a ∈ Z/pZ such that {a1, a2, . . . , ap−1} = Z/pZ − {0}. An element a or a with this property is
called a primitive root modulo p.

Sage commands: The order of a unit in a ∈ Z/mZ can be computed with Mod(a,m)
.multiplicative_order(). The command primitive_root(p) generates a primitive root
modulo p.

sage: Mod (2 ,5). multiplicative_order ()
4
sage: Mod (2^4 ,5)
1sage: print [Mod(2^i,5) for i in range (12)]
[1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3]
sage: primitive_root (5)
2
sage: primitive_root (103)
5
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A computational short cut to calculate power modulo m is

1. Use Euler-Fermat congruence if possible.

2. Employ the repeated squaring method.

The latter method consists of writting the exponent in base-2 system to reduce all the
calculations to squaring over and over.

For instance to compute x ≡ 2011196 (mod 127) note firstly 2010 ≡ 106 ≡ −21, then
x ≡ 21196. Euler-Fermat congruence says 21126 ≡ 1 then x ≡ 2170. Writting 70 = 26 + 22 + 2
we have x ≡ 2126 · 2122 · 212 that can be computed by iterated squaring of 21 (recall to reduce
modulo 127 after each squaring).

Sage commands: Computing an (mod m) is easy for the computers even when large num-
bers (of hundred of digits) are involved in the calculation. The most direct command is
power_mod(a,n,m).

sage: power_mod (5^40+2 ,7^30 ,10^20+1)
65622873844338379843
sage: # Also
sage: Mod (5^40+2 ,10^20+1)^(7^30)
65622873844338379843
sage: # Avoid this way of doing the calculation !!!
sage: Mod ((5^40+2)^(7^30) ,10^20+1)


