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Elliptic curve cryptography

The elliptic curve discrete logarithm problem. Recall that the DLP consists in solving
gx = h in F∗

p for given g and h. The elliptic curve discrete logarithm problem ECDLP is the
analogue changing the multiplicative group operation by the group law in the elliptic curve.
It consists in finding x ∈ Z such that xG = H where G and H are points on a given elliptic
curve over a finite field. We say that x is the discrete logarithm of H to the base G.

In Sage it can be solved with G.dicrete_log(H). For instance

E = EllipticCurve(GF(103) , [1,1])
G = E([0 ,1])
H = 20*G
print G.discrete_log(H)

prints 20. If we replace 20 by 100 the result is 13 because the order of G is 87. By the way,
the latter value is obtained with additive_order(G).

No algorithm is known to compute discrete logarithms in an elliptic curve over Fp in less
than

√
p steps. This means that using p with a hundred digits (or even much less) is safe. In

the previous listing changing GF(next_prime(103)) by GF(next_prime(10^20)) could be too
much for Sage running in a usual computer.

Of course in applicatins one looks for G having large order. In Sage the structure of the
abelian group of an elliptic curve E is given by E.abelian_group(). On the other hand,
E.gens() gives a list with the generators in such a way that the first one has maximal order.

E = EllipticCurve(GF(47), [1 ,1])
print E.abelian_group ()
print E.gens()
print ’Element of maximal order =’,E.gens ()[0]

A possible output for this listing is:

(Multiplicative Abelian Group isomorphic to C30 x C2, ((44 : 21 : 1),(35 : 0 : 1)))

((44 : 21 : 1), (35 : 0 : 1))

Element of maximal order = (44 : 21 : 1)

The format of E.abelian_group() can vary from a version of Sage to another. The previous
output means that P = (44, 21) and Q = (35, 0) are points of order 30 and 2, respectively and
any point on E can be written as mP + nQ with m,n ∈ Z.

The elliptic curve ElGamal cryptosystem. In principle one can copy the classic ElGamal
cryptosystem changing the multiplicative structure of F∗

p by the group law in an elliptic curve
E over Fp (or a finite field).
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A point G ∈ E of large order and E itself are public information. The private key is an
integer k2 less than the order of G and the public key is K1 = k2G. The hardness of ECDLP
assures that it is difficult to recover K1 from k2.

The set of plaintext messages is the set of points over the given field. The encryption and
decryption functions are

eK1(M) = (rG, M + rK1) r = random number
dk2(C1, C2) = C2 − k2C1

A technical problem is how to encode characters into points of an elliptic curve (note that
M ∈ E).

There is a variation of the cryptosystem sometimes called MV-ElGamal (MV stands for
Menezes and Vanstone) that avoids this technical problem. In this version a message M is
divided into two blocks m1 and m2 modulo p, i.e. Fp ×Fp is the set of plaintext messages (and
the encoding is very easy).

The encryption function is given by

eK1(M) = (rG, c1, c2) ∈ E × Fp × Fp

where c1 ≡ xm1 (mod p), c2 ≡ ym2 (mod p), with (x, y) = rK1. We assume x, y ̸= 0,
otherwise we choose another random r. The corresponding decryption function is

dk2(C0, c1, c2) = (c1x
−1, c2y

−1) where (x, y) = k2C0.

For instance, if we choose

#
# Choose the elliptic curve modulo p = large prime
# and G a point of high order
#
p = next_prime (10^10)
E = EllipticCurve( GF( p ), [2011 ,1])
G = E([0 ,1])
print G.additive_order ()

The output is 3333330247, then the order G is quite large.
The functions eK1 and dk2 introduced before can be coded as:
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#
# Encryption and decryption functions
#
def encrypt_mv_eg(Kpub ,m1,m2):

x,y = 0,0
while( (x==0) or (y==0) ):

r = floor( p*random () )
x = (r*Kpub )[0]
y = (r*Kpub )[1]

return r*G, m1*x, m2*y

def decrypt_mv_eg(kpri ,enc):
x = (kpri*enc [0])[0]
y = (kpri*enc [0])[1]
return enc [1]*x^-1, enc [2]*y^-1

If it is a valid cryptosystem then dk2

(
eK1(M)

)
= M

#
# Example
#
private_key = 12345
public_key = private_key*G
decrypt_mv_eg(private_key , encrypt_mv_eg(public_key ,10101 ,33333))

We recover the original message (10101,33333).

Recall that we can convert strings of characters into integers thanks to the following simple
encoding and decoding functions:

# text to number
def encoding(text):

result = 0
for c in text:

result = 256* result +ord(c)
return result

# number to text
def decoding(number ):

number = Integer(number)
result = ’’
for i in number.digits (256):

result = chr(i) + result
return result

Actually in our case we need to divide into an even number of blocks. If we think in a
character as a number < 256 (its ASCII code) and we employ Fp as a field then we can encode
at most log256 p characters in each block.
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#
# TABLE for a long text
# 1st column: Decoded and decrypted text (original message)
# 2nd , 3rd: encoded blocks
# rest: encrypted blocks
#
text = ’This is a long text to be subdivided into blocks ’
k = floor( log(p,256) )
key = 12345
for i in range(0, len(text), 2*k):

m1 = encoding(text[i:i+k])
m2 = encoding(text[i+k:i+2*k])
enc = encrypt_mv_eg(key*G,m1,m2)
d1 = decoding( decrypt_mv_eg(key , enc )[0] )
d2 = decoding( decrypt_mv_eg(key , enc )[1] )
print d1+d2 , m1 ,m2 , enc

This is 1416128883 543781664 ((6085741895 : 8254518770 : 1), 7312388880, 5371594140)

a long t 1629514863 1852252276 ((8649855487 : 1362971917 : 1), 286631972, 6170749646)

ext to b 1702392864 1953439842 ((9600714213 : 1592560103 : 1), 7774722895, 1581078717)

e subdiv 1696625525 1650747766 ((6309572051 : 9204716993 : 1), 4678543272, 9009446437)

ided int 1768187236 543780468 ((5659728365 : 447382763 : 1), 6143475220, 9237109331)

o blocks 1864393324 1868786547 ((434505921 : 4258432774 : 1), 8775161069, 8407264212)


