CRYPTOGRAPHY. UAM 2010-2011 1

Elliptic curve cryptography

The elliptic curve discrete logarithm problem. Recall that the DLP consists in solving
g® = h in F, for given g and h. The elliptic curve discrete logarithm problem ECDLP is the
analogue changing the multiplicative group operation by the group law in the elliptic curve.
It comsists in finding x € Z such that xG = H where G and H are points on a given elliptic
curve over a finite field. We say that x is the discrete logarithm of H to the base G.

In Sage it can be solved with G.dicrete_log(H). For instance

EllipticCurve (GF(103), [1,1])
E([0,1]1)

20%G

rint G.discrete_log(H)

E
G
H
p

prints 20. If we replace 20 by 100 the result is 13 because the order of G is 87. By the way,
the latter value is obtained with additive_order(G).

No algorithm is known to compute discrete logarithms in an elliptic curve over I, in less
than ,/p steps. This means that using p with a hundred digits (or even much less) is safe. In
the previous listing changing GF (next_prime (103)) by GF (next_prime(10720)) could be too
much for Sage running in a usual computer.

Of course in applicatins one looks for G having large order. In Sage the structure of the
abelian group of an elliptic curve E is given by E.abelian_group(). On the other hand,
E.gens () gives a list with the generators in such a way that the first one has maximal order.

E = EllipticCurve (GF(47), [1,1]1)

print E.abelian_group ()

print E.gens ()

print ’Element of maximal order =’,E.gens () [0]

A possible output for this listing is:

(Multiplicative Abelian Group isomorphic to C30 x C2, ((44 : 21 : 1),(35 : 0 : 1)))
((44 : 21 : 1), (35 : 0 : 1))
Element of maximal order = (44 : 21 : 1)

The format of E.abelian_group() can vary from a version of Sage to another. The previous
output means that P = (44,21) and @ = (35,0) are points of order 30 and 2, respectively and
any point on E can be written as mP + n@ with m,n € Z.

The elliptic curve ElGamal cryptosystem. In principle one can copy the classic El1Gamal
cryptosystem changing the multiplicative structure of F), by the group law in an elliptic curve
E over F), (or a finite field).

CRYPTOGRAPHY. UAM 2010-2011 2

A point G € FE of large order and F itself are public information. The private key is an
integer ks less than the order of G and the public key is K1 = k3G. The hardness of ECDLP
assures that it is difficult to recover K from ks.

The set of plaintext messages is the set of points over the given field. The encryption and
decryption functions are

ex, (M) = (rG,M +rK,) r = random number
di, (C1,C2) = Cy—koCy

A technical problem is how to encode characters into points of an elliptic curve (note that
M e E).

There is a variation of the cryptosystem sometimes called MV-ElGamal (MV stands for
Menezes and Vanstone) that avoids this technical problem. In this version a message M is
divided into two blocks m; and mg modulo p, i.e. [, x I}, is the set of plaintext messages (and
the encoding is very easy).

The encryption function is given by

ex,(M) = (rG,c1,c2) € ExFp xF,

where ¢; = xmy (mod p), co = ymy (mod p), with (z,y) = rK;. We assume z,y # 0,
otherwise we choose another random r. The corresponding decryption function is

1

dy,(Co,c1,c2) = (1™t coy™) where (z,y) = k2Cy.

For instance, if we choose

#

Choose the elliptic curve modulo p = large prime
and G a point of high order

#

p = next_prime (10710)

E = EllipticCurve(GF(C p), [2011,1])

G = EC[0,1])

print G.additive_order ()

The output is 3333330247, then the order G is quite large.
The functions eg, and dj, introduced before can be coded as:

CRYPTOGRAPHY. UAM 2010-2011 3

#
Encryption and decryption functions

def encrypt_mv_eg (Kpub,ml,m2):
x,y = 0,0
while((x==0) or (y==0)):

r = floor(p*random())
x = (r*xKpub) [0]
y = (r*Kpub) [1]

return r*G, ml*x, m2x*y

def decrypt_mv_eg(kpri,enc):
x = (kprixenc[0]) [0]
y = (kpri*enc[0])[1]
return enc[1]*x"-1, enc[2]*xy~-1

If it is a valid cryptosystem then dy, (ex, (M)) = M

#

Example

#

private_key = 12345

public_key = private_key*G

decrypt_mv_eg(private_key, encrypt_mv_eg(public_key,10101,33333))

We recover the original message (10101, 33333).

Recall that we can convert strings of characters into integers thanks to the following simple
encoding and decoding functions:

text to number
def encoding(text):
result = 0
for ¢ in text:
result = 256*result +ord(c)
return result

number to text
def decoding(number):

number = Integer (number)

result = 7’

for i in number.digits (256):
result = chr(i) + result

return result

Actually in our case we need to divide into an even number of blocks. If we think in a
character as a number < 256 (its ASCII code) and we employ I, as a field then we can encode
at most logysg p characters in each block.

CRYPTOGRAPHY. UAM 2010-2011

#
TABLE for a long text
1st column: Decoded and decrypted text (original message)
2nd, 3rd: encoded blocks
rest: encrypted blocks
#
text = ’This is a long text to be subdivided into blocks’
k = floor(log(p,256))
key = 12345
for i in range(0, len(text), 2x*k):
ml = encoding(text[i:i+k])
m2 = encoding(text [i+k:i+2%k])
enc = encrypt_mv_eg(key*G,ml,m2)
dl = decoding(decrypt_mv_eg(key, enc)[0])
d2 = decoding(decrypt_mv_eg(key, enc)[1])
print di1+d2, ml,m2, enc
This is 1416128883 543781664 ((6085741895 : 8254518770 : 1), 7312388880, 5371594140)
a long t | 1629514863 1852252276 | ((8649855487 : 1362971917 : 1), 286631972, 6170749646)
ext to b | 1702392864 1953439842 | ((9600714213 : 1592560103 : 1), 7774722895, 1581078717)
e subdiv | 1696625525 1650747766 | ((6309572051 : 9204716993 : 1), 4678543272, 9009446437)
ided int | 1768187236 543780468 ((5659728365 : 447382763 : 1), 6143475220, 9237109331)
o blocks | 1864393324 1868786547 | ((434505921 : 4258432774 : 1), 8775161069, 8407264212)

