T W N~

U W N

N O U W N

A Crash Course in Basic Python Commands with
Sage

1 Comments

The symbol # at the beginning of a line means that it is a line. The triple double quotes """ are reserved
for comments along several lines. If you know C/C++, they are equivalent to // and /*...*/.
Elements of Python Programming Language

more comments
more lines

Of course, do not expect any output from this program.
The command print complete it with the customary salute.
Elements of Python Programming Language

more comments

more lines
nnn

print ’Hello World!’

2 Types

According to the manuals, Python is strongly-typed. If you know what this jargon means, the following
program will probably amaze you:

HEHHHH RS R RS

#TYPES

HEHHHH AR R RS

a = 2

print 3*a

a = ’Hi’

print 3*a

The output is

6
HiHiHi

Inserting print type(a) after lines 5 and 7, you get <type ’sage.rings.integer.Integer’> in the
first case and <type ’str’> in the second. The first variable is an integer and the second a string

O © 00O Utk WN

—_

N OOt W N

CRYPTOGRAPHY. UAM 2010-2011

3 Data structures

The basic data structures built-in in python are lists, tuples and dictionaries.

Lists. A list is in principle a one-dimensional array like in many other programming languages. It is
really a list of elements separated by commas and between brackets [...,...,...]. Its elements are
called inicated its order between brackects, for instance L[0] means the first element of the list, L[1]
is the second element of the list and so on. Like in C/C++ the computers starts counting from zero.
The main difference with other languages is that the elements of a list can be objects of different nature
(type). For instance you can combine numbers, string and even lists.

The lists also admit slicing like for instance in Matlab or Octave and L[n:m] means the elements
from L[n] to LIm-1]. If n or m (or both) are omitted the starting or the finishing point are the
beginning or the end of the list. Negative values are identified with

All of these consideration should be clear with the following code
HHEHSHAHSHBEHAHIRS
#DATA STRUCTURES
HHEHSHAHSHBEHAHIRS
lists
L = [1,2,’three’ ,4,’five’]
print L
print L[3]
print L[2:4] # L[2] included, L[4] not included
print L[2:] # From LI[2]
print L[:-1] # To the last but one element
giving the output

[1, 2, ’three’, 4, ’five’]
4

[’three’, 4]

[’three’, 4, ’five’]

[1, 2, ’three’, 4]

Especially important lists are finite arithmetic progressions. They are created with range(n,m, s)
where n is the starting point, s the step and m a strict upper limit. If the step is omitted it is assumed
s = 1. If besides n is omitted it is assumed n = 0. For example
special lists
L = range(20) # from O to 20 (not included)
print L
L = range(5,20,2) # Same thing starting from 5 and step=2
print L
L = range(5,13) # Integers in [5,13)
print L

gives
(o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

5, 7, 9, 11, 13, 15, 17, 19]
(5, 6, 7, 8, 9, 10, 11, 12]

© 00 N O U Wi

W N =

N O U W N

CRYPTOGRAPHY. UAM 2010-2011

Tuples. Tuples syntax is similar to list syntax changing brackets by parenthesis in the definition.
Tuples are immutable lists. This means that they behave in the same way but you cannot redefine their
elements. The following program leads to an error uncommenting the last but one line.

tuples vs lists

L = [1,2,’three’ ,4,’five’]
print L[2:4]

L[2] = ’trois”’

print L

T = (1,2, three’ ,4,’five’)
print T[2:4]

#T[2] = ’trois’
print T
Strings and tuples are alike.
salute = "how are you doing?"

print salute[2:6]
print salutel[:-1]
salute [2]="2"

gives the expected answer for the first lines and the expected error message for the last

W ar
how are you doing

[omitted error messages]
TypeError: ’str’ object does not support item assignment

Dictionaries. Dictionaries are hash tables. A list of names and their meaning. The syntax is a list
of name: meaning between curly brackets.

dictionaries

D = {’one’: 1, ’two’: ’deux’, ’e’: ’22.718...°, ’three’: ’trois’}

print D

print ’Note that there is not a determined order in a dictionary ’
print D[’two’]

print D[’e’]

print 7*D[’one’]

{’three’: ’trois’, ’e’: ’2.718...7, ’two’: ’deux’, ’one’: 1}
Note that there is not a determined order in a dictionary
deux

2.718...

7

4 Flow control statements

The flow control statements in Python are for, if (if-else) and while. The most original convention
is that block indentation is mandatory but easy. When you mark the end of a flow control statement
when a colon : the editor automatically force you to indent.

In flow control statements the keyword in appears very often to indicate elements in a list (or tuple
or string).

0~ U W

O © 00O Ut WN

[y

= O © 00O Utk Wi

—

CRYPTOGRAPHY. UAM 2010-2011

Let us start with a very easy example

HHHHHHH SRR HH
#FLOW CONTROL
HHHHHHH SRR S
for i in range (10):
print i,
print
for i in range (3):
print i,’->’,i"2
that allows us also to learn that a comma , after print avoid a change of line

0123456789

0->0
1 ->1
2 >4

The if statement and if-else blocks work like in other languages
friends = [’John’,’Bob’,’George’,’Henry’,’Alice’]
print friends
for name in friends:

print name,

if name == ’George’:

print ’(My best friend) ,’,
elif name == ’Alice’:

print 7’
else:

print ’, 7,

The first if detects our best friend and the second, disguised as elif (else if), omits the last comma.

[’John’, ’Bob’, ’George’, ’Henry’, ’Alice’]
John , Bob , George (My best friend) , Henry , Alice

Finally, we illustrate while statement with program comparing pythonic and non-pythonic (despec-
tive term applied when one tries to write Python code using other languages philosophy)

sentence = ’The last example’
Non Pythonic
i=0

while i <len(sentence):

print sentencel[i],

i+=1 # abbreviation of i=i+1l
print ’°
Pythonic
for i in sentence:

print 1,

print 77’
The output is the same in both cases. Note that (like in C/C++) the abbreviation i+=k is available
(but ++i is not). The command len indicates the length of the string.

The last example
The last example

