CRYPTOGRAPHY. UAM 2010-2011 1

The basics of compiling and running

The classic book [KR] popularized the use of the Hello World! program. Its only purpose is to learn
how to compose, compile an run a simple program writing on the screen the homonymous message.

In general, compilation and execution are not platform independent. We restrict ourselves to Linux
systems (or, more properly, Unix-like). There are also a lot of IDEs (Integrated Development Environ-
ments) to ease the management of large projects. We only consider console commands.

See [hw] and [lp] for a more complete list.

#include <stdio.h>

int main() {
printf("Hello World!\n");
return 0;

}

Type a file called helloworld.c with your favorite text editor containing the following

lines:

#include <stdio.h>

int main() {
printf("Hello World!\n");
return 0;

}

To compile the program type in a console terminal (opened in the same path as the file)

gcc helloworld.c -o helloworld.out -1m

The options after the name of the file are not mandatory. The first one -0 helloworld.out indicates
the name of the resulting executable file. If it is not specified the output file by default is a.out. On the
other hand, the option -1m Inks the math library. It is not necessary in our case but it is required to use
mathematical functions like sine or exponential. Running the program reduces to type in the console

./helloworld.out

In some sense C++ programming language is an extension and improvement of C
largely caompatible with it. The compile and run process parallels the steps described above. Now the

analog file named helloworld.cpp

#include <iostream>

int main(){
std::cout << "Hello World!\n";
return 0;

}

The prefix std:: is cumbersome. The using directive inserted as using namespace std; after the first
line allows to replace std: :cout by cout and the same for the rest of functions in the library iostream.
This gives

CRYPTOGRAPHY. UAM 2010-2011 2

#include <iostream>

using namespace std;

int main(){
cout << "Hello World!\n";
return 0O;

}

To compile the program use

g++ helloworld.cpp -o helloworld.out -1m

and to run it, proceed as before.

[Java: Hello world | Type the following lines in a text file named helloworld. java

public class helloworld{
public static void main(String[] args) {
System.out.println("Hello World!");
}
}

The command to compile is

javac helloworld. java

It generates helloworld.class, a program to be interpreted and executed by the so-called Java Virtual
Machine (abbreviated as JVM) that is launched by

java helloworld
This is a standalone (an offline) Java program. There are also Java applets, i.e., Java programs embedded
in web pages.
‘Java applet: Hello WOrld‘ Let us say that we name helloworldapplet. java to the following lines

import java.awt.Graphics;
public class helloworldapplet extends java.applet.Applet {
public void paint(Graphics g) {
g.drawString("Hello world!", 40, 20);
}

We compile the code as before to get helloworld.class. But if we try to run it the JVM will complain
saying that there is no main in the program. We need a web page (in the same path) acting as a launcher
including

<applet code="helloworldapplet.class"></applet>

at some point of its HTML code. In fact it is convenient to include the atributes height and width
overall if (as in our case) the size of the canvas is not fixed in the applet. The full code of a web page
applet.html containing the previous applet could be

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head>

<title>An applet</title>
</head><body>
This is the applet:
<applet code="helloworldapplet.class" height="25" width="200"></applet>
</body></html>

CRYPTOGRAPHY. UAM 2010-2011 3

Naturally applet.html will be opened by a java enabled web navigator. For debugging purposes the
command

appletviewer applet.html

allows to visualize the result.

’Maple: Hello World | First of all we need Maple running. There are two modes: the console mode and
the graphic mode, usually corresponding to the commands maple and xmaple, respectively. In the second
case we select “Start with Blank Worksheet” in the popup window showing the startup menu (at least
in Maple 10) to start from scratch.

In both modes one can type a program line by line, indeed this is the easier in our case, but in
general it becomes tedious, overall in the graphic mode (the one that allows to plot functions) whose
WYSIWYG (What You See Is What You Get) interface takes too many decisions by itself. For programs
exceeding a simple calculation, the best option in both modes is to type in a separate text file. In our
case helloworld.txt with a single line:

printf ("\tHello World!\n");

To load and run this program, type beside the prompt (>) in Maple

read "helloworld.txt";

The full path is needed if Maple was opened in a different location. When using the graphics mode the
interface will try to close the double quotes by itself and the chances of typing by mistake a third pair
increase.

This Hello World! program is not the simplest, just "Hello world!"; in the command line or a
separate file does the job. The based on a C printf command allows to control format. In our case \t
refers to the tab character that indents the message with respect to the left margin.

]Matlab/octave; Hello World \ As in Maple, one could type a program line by line in the Matlab or Octave
interfaces but reasonably involved programs require separate files. In our case we type in helloworld.m

fprintf (’Hello world!\n’);

The command

helloworld

(note the absence of the extension) typed in Matlab or Octave loads and runs the program.

[Python: Hello world | In a text file helloworld.py we type

-*- coding: iso-8859-15 —*-
print ’Hello World!\n’

The first line is optional and indicates the codification that the programmer is going to use. To run it
simply type in a console

python helloworld.py

Another way of running a Python program is typing python in a terminal and after the prompt

CRYPTOGRAPHY. UAM 2010-2011 4

import helloworld

This load the functions defined in the file (in our case there are none) and run the program. This is
interesting to add formerly defined functions to our project (reusing is part of Python philosophy). If we
try to import again a file the program will not be executed because the functions are already supposed
to be loaded, then it is not the usual way of running a program.

In Unix-like systems one can convert a Python program in a directly executable command adding the
so-called shebang line (according to the Thesaurus dictionary this means an entire system; used in the
phrase ‘the whole shebang’). It is a heading line indicating how to run Python. In our case the file turns
into

#!/usr/bin/env python
-*- coding: iso-8859-15 -x*-
print ’Hello World!\n’

The shebang line indicates that Python interpreter should be searched at some place in /usr/bin. More
specific valid paths like /usr/bin/python or /usr/local/bin/python could be (more) platform depen-
dent. Modifying the file attributes of the new helloworld.py, if necessary, to obtain an executable file
(chmod a+x helloworld.py) it can be run in console with

./helloworld.py

’ Sage: Hello World ‘ Sage is Python-based then after launching Sage (typically with the console command

sage) one can type simple Python programs (like print ’Hello World!\n’). Following the previous
philosophy, we explain how to load a program in a file that in this case we name helloworld.sage and
contains

print ’Hello World!\n’

After Sage prompt (sage:) to run the program it is enough to write

attach "helloworld.sage"

It is also valid the more naturally named sentence

load "helloworld.sage"

This works in part like a kind of analog of import. It reads the functions only once (but runs always).
Then attach is more convenient when debugging code.

A broadly used way of typing, presenting and running Sage programs is through a web based interface.
To access to it, launch Sage with sage -notebook or type notebook() after the Sage’s prompt. A new
tab will open in the web browser by default. After logging in (if necessary), select New Worksheet and a
name. Click on the box (it will become blue) and type the program. To run it use evaluate option or
press +. There is a menu with different options to save

Like in Python it is possible to turn a Sage program in a script directly runnable in console inserting
a shebang line:

#!/usr/local/sage-4.5.1/sage
print ’Hello World!\n’

that is executed (after changing the attributes if necessary) with

CRYPTOGRAPHY. UAM 2010-2011 5

./helloworld_2.sage

This creates automatically a Python file with the same name and .py extension.
There are several other forms of running Sage code through Python code and viceversa or compiling

Sage programs to improve performance even loading external C functions. They are detailed in Chapter
5 of [sag].

References

[hw] HelloWiki! http://hellowiki.org/

[KR] B.W. Kernighan, D.M. Ritchie. The C programming language, Prentice Hall, 1978.
[lp] LiteratePrograms http://en.literateprograns.org/Hello_World

[

sag] Sage Tutorial Release 4.4.4 (by The Sage Development Team), http://wuw.sagemath.com/pdf/
SageTutorial.pdf June 24, 2010.

