
Cryptography. UAM 2010-2011 1

Affine ciphers

We assign to each letter A-Z a number 0-25. After this coding we work in Z/26Z. In
this context an affine cipher is a map f : Z/26Z −→ Z/26Z given by f(x) = ax + b with a
and 26 relatively prime. The numbers a and b are our secret keys. In the following program
correspond to the variables key1 and key2.

1 alph = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ ’
2
3 message = ’MYSECRET ’
4
5 # ENCRYPT MESSAGES
6 key1 = 3
7 key2 = 0
8
9 encrypted = ’’

10 for c in message:
11 loc = alph.find(c)
12 encrypted += alph[Mod(key1*loc+key2 ,26)]
13 print message
14 print encrypted

If you are not a skilled Pythonist or Sage you will appreciate the following comments:

Start with and empty encrypted message
we’ll add character with a loop
encrypted = ’’
This is the loop c is each character in the message
for c in message:

Search the position of c in alph.
This is the code corresponding to c
loc = alph.find(c)
Computes (key1*loc+key2 modulo 26 and
append the corresponding character to encrypted
encrypted += alph[Mod(key1*loc+key2 ,26)]

#Print the original and the encrypted messages
print message
print encrypted

Reusing is part of the Pyhton philosophy and we can recycle our program more easily using
functions. In the computer science jargon this is a kind of encapsulation. We call the function
using the message and the keys and we do not care about the internal definition of the alphabet
or the access to it.

1 def encrypt(message , key1 ,key2):
2 alph = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ ’
3 encrypted = ’’
4 for c in message:
5 loc = alph.find(c)
6 encrypted += alph[Mod(key1*loc+key2 ,26)]
7 print message ,’->’,encrypted

Cryptography. UAM 2010-2011 2

Now we encrypt with

ENCRYPT MESSAGES
encrypt(’MYSECRET ’, 3,0)

that gives KUCMGZMF.
The inverse function of f(x) = ax + b is g(x) = a−1(x− b) = a−1x− a−1b. We have to use

it to decrypt messages

encrypt(’KUCMGZMF ’, 3. inverse_mod (26) ,0)

gives MYSECRET.
In general

encrypt (..., key1.inverse_mod (26),-key1.inverse_mod (26)* key2)

inverts

encrypt (..., key1 ,key2)

Note that we really need a = key1 and 26 to be relatively prime because we have to
compute the multiplicative inverse of a in Z/26Z to apply the inverse map.

We can add new characters to our alphabet (the usual ASCII code employs 256 characters,
one byte) modifying the modulo.

Here we have an example:

1 def encrypt27(message , key1 ,key2):
2 alph = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ?’
3 encrypted = ’’
4 for c in message:
5 loc = alph.find(c)
6 encrypted += alph[Mod(key1*loc+key2 ,27)]
7 print message ,’->’,encrypted
8
9 # ENCRYPT MESSAGES

10 encrypt27(’HOWAREYOU?’, 2,0)
11 encrypt27(’OBRAHIVBNZ ’, 2. inverse_mod (27) ,0)

If we encrypt with

encrypt27(’HOWAREYOU?’, 2,0)

we decrypt with

encrypt27(’OBRAHIVBNZ ’, 2. inverse_mod (27) ,0)

