Deddens Algebras and Compact Composition Operators

Srdjan Petrovic^{WMU} Daniel Sievewright^{CMU}

Universidad Autónoma de Madrid, October, 2018

Srdjan Petrovic, Daniel Sievewright

Deddens algebras

Universidad Autónoma de Madrid, October, 2

Let K be a compact operator on Hilbert space and λ a complex number. If T is an operator satisfying $KT = \lambda TK$, then T has a nontrivial hyperinvariant subspace.

Let K be a compact operator on Hilbert space and λ a complex number. If T is an operator satisfying $KT = \lambda TK$, then T has a nontrivial hyperinvariant subspace.

Remark: The set of all such operators T is not an algebra.

Let K be a compact operator on Hilbert space and λ a complex number. If T is an operator satisfying $KT = \lambda TK$, then T has a nontrivial hyperinvariant subspace.

Remark: The set of all such operators T is not an algebra. **Idea:** Consider an algebra that contains all such operators (for $|\lambda| \leq 1$).

Let K be a compact operator on Hilbert space and λ a complex number. If T is an operator satisfying $KT = \lambda TK$, then T has a nontrivial hyperinvariant subspace.

Remark: The set of all such operators T is not an algebra. **Idea:** Consider an algebra that contains all such operators (for $|\lambda| \leq 1$).

A.Lambert: Spectral Radius Algebras.

Let K be a compact operator on Hilbert space and λ a complex number. If T is an operator satisfying $KT = \lambda TK$, then T has a nontrivial hyperinvariant subspace.

Remark: The set of all such operators T is not an algebra. **Idea:** Consider an algebra that contains all such operators (for $|\lambda| \leq 1$).

A.Lambert: Spectral Radius Algebras.

J.Deddens: Deddens Algebras.

$$\mathcal{D}_{\mathcal{A}} = \{T \in \mathcal{L}(\mathcal{H}) : \sup_{n \in \mathbb{N}} \|\mathcal{A}^n T \mathcal{A}^{-n}\| < \infty\}.$$

$$\mathcal{D}_{\mathcal{A}} = \{T \in \mathcal{L}(\mathcal{H}) : \sup_{n \in \mathbb{N}} \|\mathcal{A}^n T \mathcal{A}^{-n}\| < \infty\}.$$

(1990s) $T \in \mathcal{D}_A$ if there exists M = M(T) > 0 such that $\|A^n Tx\| \le M \|A^n x\|$, for all $n \in \mathbb{N}$ and for all $x \in \mathcal{H}$.

(1)

$$\mathcal{D}_{\mathcal{A}} = \{ T \in \mathcal{L}(\mathcal{H}) : \sup_{n \in \mathbb{N}} \|\mathcal{A}^n T \mathcal{A}^{-n}\| < \infty \}.$$

(1990s) $T \in \mathcal{D}_A$ if there exists M = M(T) > 0 such that $\|A^n Tx\| \le M \|A^n x\|$, for all $n \in \mathbb{N}$ and for all $x \in \mathcal{H}$. (1)

A need not be invertible!

$$\mathcal{D}_{\mathcal{A}} = \{ T \in \mathcal{L}(\mathcal{H}) : \sup_{n \in \mathbb{N}} \| \mathcal{A}^n T \mathcal{A}^{-n} \| < \infty \}.$$

(1990s) $T \in \mathcal{D}_A$ if there exists M = M(T) > 0 such that

 $\|A^n Tx\| \le M \|A^n x\|, \text{ for all } n \in \mathbb{N} \text{ and for all } x \in \mathcal{H}.$ (1)

A need not be invertible!

Remark: If $|\lambda| \leq 1$ and $AT = \lambda TA$ then $T \in \mathcal{D}_A$.

$$\mathcal{D}_{\mathcal{A}} = \{ T \in \mathcal{L}(\mathcal{H}) : \sup_{n \in \mathbb{N}} \| \mathcal{A}^n T \mathcal{A}^{-n} \| < \infty \}.$$

(1990s) $T \in \mathcal{D}_A$ if there exists M = M(T) > 0 such that

 $\|A^n Tx\| \le M \|A^n x\|, \text{ for all } n \in \mathbb{N} \text{ and for all } x \in \mathcal{H}.$ (1)

A need not be invertible!

Remark: If $|\lambda| \leq 1$ and $AT = \lambda TA$ then $T \in \mathcal{D}_A$. In particular, $\{A\}' \subset \mathcal{D}_A$.

If K is a nonzero compact operator on Hilbert space, then \mathcal{D}_K has a nontrivial invariant subspace.

If K is a nonzero compact operator on Hilbert space, then \mathcal{D}_K has a nontrivial invariant subspace.

Project: Describe (the weak closure of) the algebra $\mathcal{D}_{\mathcal{K}}$.

If K is a nonzero compact operator on Hilbert space, then \mathcal{D}_K has a nontrivial invariant subspace.

Project: Describe (the weak closure of) the algebra $\mathcal{D}_{\mathcal{K}}$.

Project: Describe the lattice of invariant subspaces of $\mathcal{D}_{\mathcal{K}}$.

If K is a nonzero compact operator on Hilbert space, then \mathcal{D}_K has a nontrivial invariant subspace.

Project: Describe (the weak closure of) the algebra $\mathcal{D}_{\mathcal{K}}$.

Project: Describe the lattice of invariant subspaces of $\mathcal{D}_{\mathcal{K}}$.

Weighted shifts (not necessarily compact)

If K is a nonzero compact operator on Hilbert space, then \mathcal{D}_{K} has a nontrivial invariant subspace.

Project: Describe (the weak closure of) the algebra $\mathcal{D}_{\mathcal{K}}$.

Project: Describe the lattice of invariant subspaces of $\mathcal{D}_{\mathcal{K}}$.

Weighted shifts (not necessarily compact)

• Multiplicity 1 [Petrovic]

If K is a nonzero compact operator on Hilbert space, then \mathcal{D}_{K} has a nontrivial invariant subspace.

Project: Describe (the weak closure of) the algebra $\mathcal{D}_{\mathcal{K}}$.

Project: Describe the lattice of invariant subspaces of $\mathcal{D}_{\mathcal{K}}$.

Weighted shifts (not necessarily compact)

- Multiplicity 1 [Petrovic]
- Finite multiplicity [Sievewright]

If K is a nonzero compact operator on Hilbert space, then \mathcal{D}_K has a nontrivial invariant subspace.

Project: Describe (the weak closure of) the algebra $\mathcal{D}_{\mathcal{K}}$.

Project: Describe the lattice of invariant subspaces of $\mathcal{D}_{\mathcal{K}}$.

Weighted shifts (not necessarily compact)

- Multiplicity 1 [Petrovic]
- Finite multiplicity [Sievewright]
- Infinite multiplicity [Petrovic, Sievewright]

 \mathbb{D} - the unit disk, Hardy space $H^2 = H^2(\mathbb{D})$, $\varphi : \mathbb{D} \to \mathbb{D}$ analytic, the composition operator C_{φ} : $C_{\varphi}f = f \circ \varphi$, for $f \in H^2$. \mathbb{D} – the unit disk, Hardy space $H^2 = H^2(\mathbb{D})$, $\varphi : \mathbb{D} \to \mathbb{D}$ analytic, the composition operator C_{φ} : $C_{\varphi}f = f \circ \varphi$, for $f \in H^2$.

We assume that C_{φ} is compact.

 \mathbb{D} – the unit disk, Hardy space $H^2 = H^2(\mathbb{D})$, $\varphi : \mathbb{D} \to \mathbb{D}$ analytic, the composition operator C_{φ} : $C_{\varphi}f = f \circ \varphi$, for $f \in H^2$.

We assume that C_{φ} is compact.

Theorem (Caughran, Schwartz)

If \mathcal{C}_{φ} is compact composition operator, then φ has a fixed point in $\mathbb D$

Srdjan Petrovic, Daniel Sievewright

Universidad Autónoma de Madrid, October, 2

 \mathbb{D} - the unit disk, Hardy space $H^2 = H^2(\mathbb{D})$, $\varphi : \mathbb{D} \to \mathbb{D}$ analytic, the composition operator C_{φ} : $C_{\varphi}f = f \circ \varphi$, for $f \in H^2$.

We assume that C_{φ} is compact.

Theorem (Caughran, Schwartz)

If \mathcal{C}_{φ} is compact composition operator, then φ has a fixed point in $\mathbb D$

WLOG: $\varphi(0) = 0$.

Multiplication operators belong to $\mathcal{D}_{C_{\omega}}$.

Multiplication operators belong to $\mathcal{D}_{C_{\varphi}}$.

Proof:

$$C_{\varphi}M_h = M_{h\circ\varphi}C_{\varphi} \quad \Rightarrow \quad C_{\varphi}^nM_h = M_{h\circ\varphi_n}C_{\varphi}^n.$$

▲ □ ▶ ▲ □ ▶ ▲ □

Multiplication operators belong to $\mathcal{D}_{C_{\omega}}$.

Proof:

$$C_{\varphi}M_h = M_{h\circ\varphi}C_{\varphi} \quad \Rightarrow \quad C_{\varphi}^nM_h = M_{h\circ\varphi_n}C_{\varphi}^n.$$

Recall: $T \in \mathcal{D}_A$ if $\exists M$ such that

 $||A^nTx|| \le M||A^nx||$, for all $n \in \mathbb{N}$ and for all $x \in \mathcal{H}$.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Multiplication operators belong to $\mathcal{D}_{C_{\omega}}$.

Proof:

$$C_{\varphi}M_h = M_{h\circ\varphi}C_{\varphi} \quad \Rightarrow \quad C_{\varphi}^nM_h = M_{h\circ\varphi_n}C_{\varphi}^n.$$

Recall: $T \in \mathcal{D}_A$ if $\exists M$ such that

 $||A^n Tx|| \le M ||A^n x||$, for all $n \in \mathbb{N}$ and for all $x \in \mathcal{H}$.

In particular, the unilateral shift belongs to $\mathcal{D}_{C_{\alpha}}$.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Multiplication operators belong to $\mathcal{D}_{C_{\omega}}$.

Proof:

$$C_{\varphi}M_h = M_{h\circ\varphi}C_{\varphi} \quad \Rightarrow \quad C_{\varphi}^nM_h = M_{h\circ\varphi_n}C_{\varphi}^n.$$

Recall: $T \in \mathcal{D}_A$ if $\exists M$ such that

 $||A^n Tx|| \le M ||A^n x||$, for all $n \in \mathbb{N}$ and for all $x \in \mathcal{H}$.

In particular, the unilateral shift belongs to $\mathcal{D}_{C_{\omega}}$.

If \mathcal{M} is invariant for $\mathcal{D}_{C_{\varphi}}$ then $\mathcal{M} = \theta H^2$ for some inner function (Beurling). Let $\theta = BS$, with B a Blaschke product and S a singular inner function.

通 ト イ ヨ ト イ ヨ ト

The antiderivative operator $Vf(z) = \int_0^z f(w) dw$ belongs to $\mathcal{D}_{C_{\omega}}$.

э

The antiderivative operator $Vf(z) = \int_0^z f(w) dw$ belongs to $\mathcal{D}_{C_{\omega}}$.

Proof:

$$C_{\varphi}V = VM_{\varphi'}C_{\varphi} \quad \Rightarrow \quad C_{\varphi}^{n}V = VM_{\varphi'_{n}}C_{\varphi}^{n}.$$

(Take derivatives and notice that both sides vanish at z = 0).

Srdjan Petrovic, Daniel Sievewright

直 ト イ ヨ ト イ ヨ ト

The antiderivative operator $Vf(z) = \int_0^z f(w) dw$ belongs to $\mathcal{D}_{C_{\varphi}}$.

Proof:

$$C_{\varphi}V = VM_{\varphi'}C_{\varphi} \quad \Rightarrow \quad C_{\varphi}^{n}V = VM_{\varphi'_{n}}C_{\varphi}^{n}.$$

(Take derivatives and notice that both sides vanish at z = 0). Fact: $VM_{g'}$ is a bounded operator on H^2 if $g \in BMOA$ (Pommerenke).

Let $\theta = BS$. If $\alpha \neq 0$ is a zero of B, then the subspace $\mathcal{M} = \theta H^2$ cannot be invariant for $\mathcal{D}_{C_{\varphi}}$.

Let $\theta = BS$. If $\alpha \neq 0$ is a zero of B, then the subspace $\mathcal{M} = \theta H^2$ cannot be invariant for $\mathcal{D}_{C_{\varphi}}$.

Proof:

If $\mathcal M$ is invariant for $\mathcal D_{\mathcal C_{\omega}}$, and $n\geq 0$, then $heta(z)z^n\in \mathcal M$, so

$$\int_0^z \theta(w) w^n \, dw \in \mathcal{M} \quad \Rightarrow \quad \int_0^\alpha \theta(w) w^n \, dw = 0.$$

Let $\theta = BS$. If $\alpha \neq 0$ is a zero of B, then the subspace $\mathcal{M} = \theta H^2$ cannot be invariant for $\mathcal{D}_{C_{\varphi}}$.

Proof:

If $\mathcal M$ is invariant for $\mathcal D_{\mathcal C_{\varphi}}$, and $n\geq 0$, then $heta(z)z^n\in \mathcal M$, so

$$\int_0^z \theta(w) w^n \, dw \in \mathcal{M} \quad \Rightarrow \quad \int_0^\alpha \theta(w) w^n \, dw = 0.$$

Change of variables $w = s\alpha$:

$$\int_0^1 \theta(s\alpha) \, s^n \, ds = 0, \text{ for } n = 0, 1, 2, \dots$$

Contradiction!

Let $\theta(z) = z^n S(z)$. If S is not a constant then the subspace $\mathcal{M} = \theta H^2$ cannot be invariant for $\mathcal{D}_{C_{\varphi}}$.

Let $\theta(z) = z^n S(z)$. If S is not a constant then the subspace $\mathcal{M} = \theta H^2$ cannot be invariant for $\mathcal{D}_{C_{\varphi}}$.

Proof:

$$S(z) = \exp\left\{-\int_0^{2\pi} rac{e^{it}+z}{e^{it}-z} d\mu(t)
ight\},$$

 μ a finite measure on $[0, 2\pi]$, $\mu \perp m$ (Lebesgue measure). Fact: $\exists E \subset \mathbb{T}$, $\mu(E) = 0$, $\forall \zeta \in \mathbb{T} \setminus E$, $\lim_{r \uparrow 1} S(r\zeta) = 0$. Therefore, if $f \in \mathcal{M}$, and I_f is its inner factor, then $\lim_{r \uparrow 1} I_f(r\zeta) = 0$.

Let $\theta(z) = z^n S(z)$. If S is not a constant then the subspace $\mathcal{M} = \theta H^2$ cannot be invariant for $\mathcal{D}_{C_{\varphi}}$.

Proof:

$$S(z) = \exp\left\{-\int_0^{2\pi}rac{e^{it}+z}{e^{it}-z}\,d\mu(t)
ight\},$$

 $\begin{array}{l} \mu \text{ a finite measure on } [0,2\pi], \ \mu \perp m \text{ (Lebesgue measure)}. \\ \text{Fact: } \exists E \subset \mathbb{T}, \ \mu(E) = 0, \ \forall \zeta \in \mathbb{T} \setminus E, \ \lim_{r \uparrow 1} S(r\zeta) = 0. \\ \text{Therefore, if } f \in \mathcal{M}, \ \text{and } I_f \ \text{is its inner factor, then } \lim_{r \uparrow 1} I_f(r\zeta) = 0. \\ \text{If } m \in \mathbb{N}, \ g_m(z) = z^{n+m}S(z) \in \mathcal{M}, \ \text{so } F_m = Vg_m \in \mathcal{M}. \ \text{Therefore,} \\ \lim_{r \uparrow 1} I_{F_m}(r\zeta) = 0, \quad \text{for all } \zeta \in \mathbb{T} \setminus E, \ \text{and all } m \in \mathbb{N}. \end{array}$

く 伺 ト く ヨ ト く ヨ ト

Fact: the outer factor of F_m is given by

$$O_{F_m}(r\zeta) = \exp\left\{\frac{1}{2\pi}\int_0^{2\pi}\frac{e^{it}+r\zeta}{e^{it}-r\zeta}\,\log|F_m(e^{it})|\,dt\right\}.$$

If $\zeta = e^{it_0}$ and P is the Poisson kernel, then

$$|O_{F_m}(r\zeta)| = \exp\left\{\frac{1}{2\pi}\int_0^{2\pi} P_r(t-t_0) \log |F_m(e^{it})| dt\right\}.$$

Srdjan Petrovic, Daniel Sievewright

Universidad Autónoma de Madrid, October, 2

Fact: the outer factor of F_m is given by

$$O_{F_m}(r\zeta) = \exp\left\{\frac{1}{2\pi}\int_0^{2\pi}\frac{e^{it}+r\zeta}{e^{it}-r\zeta}\,\log|F_m(e^{it})|\,dt\right\}$$

If $\zeta = e^{it_0}$ and P is the Poisson kernel, then

$$|O_{F_m}(r\zeta)| = \exp\left\{\frac{1}{2\pi}\int_0^{2\pi} P_r(t-t_0) \log |F_m(e^{it})| dt\right\}.$$

$$\begin{split} F_m &= V(z^{n+m}S) \Rightarrow \|F_m\|_{\infty} \leq 1 \Rightarrow \log |F_m(e^{it})| \leq 0, \text{ for a.e. } t \in [0, 2\pi]. \\ P_r \geq 0 \Rightarrow |O_{F_m}(r\zeta)| \leq 1, \quad \text{for all } \zeta \in \mathbb{T} \setminus E, \text{ and all } m \in \mathbb{N}. \end{split}$$

Fact: the outer factor of F_m is given by

$$O_{F_m}(r\zeta) = \exp\left\{rac{1}{2\pi}\int_0^{2\pi}rac{e^{it}+r\zeta}{e^{it}-r\zeta}\,\log|F_m(e^{it})|\,dt
ight\}.$$

If $\zeta = e^{it_0}$ and P is the Poisson kernel, then

$$|O_{F_m}(r\zeta)| = \exp\left\{\frac{1}{2\pi}\int_0^{2\pi} P_r(t-t_0) \log |F_m(e^{it})| dt\right\}.$$

$$\begin{split} F_m &= V(z^{n+m}S) \Rightarrow \|F_m\|_{\infty} \leq 1 \Rightarrow \log |F_m(e^{it})| \leq 0, \text{ for a.e. } t \in [0, 2\pi]. \\ P_r \geq 0 \Rightarrow |O_{F_m}(r\zeta)| \leq 1, \quad \text{for all } \zeta \in \mathbb{T} \setminus E, \text{ and all } m \in \mathbb{N}. \\ \text{Now, } \lim_{r \uparrow 1} I_{F_m}(r\zeta) = 0 \text{ implies} \end{split}$$

$$\lim_{r\uparrow 1}F_m(r\zeta)=0,\quad \text{for all }\zeta\in\mathbb{T}\setminus E,\text{ and all }m\in\mathbb{N}.$$

Srdjan Petrovic, Daniel Sievewright

Substitution: $w = s\zeta$,

$$\begin{aligned} F_m(r\zeta) &= \int_0^{r\zeta} w^{m+n} S(w) \, dw \\ &= \int_0^r s^{m+n} S(s\zeta) \zeta^{m+n+1} \, ds \\ &= \zeta^{m+n+1} \int_0^r s^{m+n} S(s\zeta) \, ds. \end{aligned}$$

Srdjan Petrovic, Daniel Sievewright

Universidad Autónoma de Madrid, October, 2

э

イロン イ理 とく ヨン イヨン

Substitution: $w = s\zeta$,

$$F_m(r\zeta) = \int_0^{r\zeta} w^{m+n} S(w) \, dw$$
$$= \int_0^r s^{m+n} S(s\zeta) \zeta^{m+n+1} \, ds$$
$$= \zeta^{m+n+1} \int_0^r s^{m+n} S(s\zeta) \, ds.$$

Let $r \uparrow 1$. Obtain that $S(s\zeta) \equiv 0$, for all $\zeta \in \mathbb{T} \setminus E$ and all $s \in (0,1)$. It follows that $E = \mathbb{T}$. Recall that $\mu(E) = 0$, so $\mu(\mathbb{T}) = 0$, so μ is the zero measure, which means that S must be constant. Conclusion: if \mathcal{M} is a n.i.s for $\mathcal{D}_{C_{\varphi}}$, then $\mathcal{M} = z^n H^2$ for some $n \in \mathbb{N}$.

Conclusion: if \mathcal{M} is a n.i.s for $\mathcal{D}_{\mathcal{C}_{\omega}}$, then $\mathcal{M} = z^n H^2$ for some $n \in \mathbb{N}$.

What about the converse? Will assume that $\varphi'(0) \neq 0$ and that C_{φ} is compact. Conclusion: if \mathcal{M} is a n.i.s for $\mathcal{D}_{C_{\omega}}$, then $\mathcal{M} = z^n H^2$ for some $n \in \mathbb{N}$.

What about the converse? Will assume that $\varphi'(0) \neq 0$ and that C_{φ} is compact.

Theorem

Let $\varphi : \mathbb{D} \to \mathbb{D}$ be a nonzero analytic function that satisfies $\varphi(0) = 0$, $\varphi'(0) \neq 0$, and such that C_{φ} is a compact composition operator. Then \mathcal{M} is a nontrivial invariant subspace for $\mathcal{D}_{C_{\varphi}}$ if and only if $\mathcal{M} = z^{n}H^{2}$, for some $n \in \mathbb{N}$. Conclusion: if \mathcal{M} is a n.i.s for $\mathcal{D}_{C_{\omega}}$, then $\mathcal{M} = z^n H^2$ for some $n \in \mathbb{N}$.

What about the converse? Will assume that $\varphi'(0) \neq 0$ and that C_{φ} is compact.

Theorem

Let $\varphi : \mathbb{D} \to \mathbb{D}$ be a nonzero analytic function that satisfies $\varphi(0) = 0$, $\varphi'(0) \neq 0$, and such that C_{φ} is a compact composition operator. Then \mathcal{M} is a nontrivial invariant subspace for $\mathcal{D}_{C_{\varphi}}$ if and only if $\mathcal{M} = z^{n}H^{2}$, for some $n \in \mathbb{N}$.

Question:

What does this say about (the weak closure of) $\mathcal{D}_{C_{\omega}}$?

Conclusion: if \mathcal{M} is a n.i.s for $\mathcal{D}_{C_{\omega}}$, then $\mathcal{M} = z^n H^2$ for some $n \in \mathbb{N}$.

What about the converse? Will assume that $\varphi'(0) \neq 0$ and that C_{φ} is compact.

Theorem

Let $\varphi : \mathbb{D} \to \mathbb{D}$ be a nonzero analytic function that satisfies $\varphi(0) = 0$, $\varphi'(0) \neq 0$, and such that C_{φ} is a compact composition operator. Then \mathcal{M} is a nontrivial invariant subspace for $\mathcal{D}_{C_{\varphi}}$ if and only if $\mathcal{M} = z^{n}H^{2}$, for some $n \in \mathbb{N}$.

Question:

What does this say about (the weak closure of) $\mathcal{D}_{C_{\omega}}$?

Answer:

 $\mathcal{D}_{C_{\omega}}$ is weakly dense in (LT), the algebra of all lower triangular matrices.

< 日 > < 同 > < 回 > < 回 > .

- Generalize to the case arphi'(0)=0
- Replace H^2 by another space of analytic functions (Bergman, Dirichlet, ...)
- Replace H^2 by L^2
- Consider the case when C_{φ} is *not* a compact operator.

- Generalize to the case arphi'(0)=0
- Replace H^2 by another space of analytic functions (Bergman, Dirichlet, ...)
- Replace H^2 by L^2
- Consider the case when C_{φ} is *not* a compact operator.

Thank you!