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Spaces over the disc

Definition
Dirichlet-type space, Dα, is:

{f ∈ Hol(D) : f (z) =
∑
k∈N

akzk , ||f ||2α =
∞∑

k=0

|ak |2(k + 1)α <∞}

Today focus on these 3 examples:

Examples

α = −1, A2 = Hol(D) ∩ L2(D)
α = 0, H2 = Hol(D) ∩ L2(T)
α = 1, D = Hol(D) ∩ {A(f (D)) <∞}
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Cyclicity and invariant subspaces

The (forward) shift operator is bdd:

S : Dα → Dα : Sf (z) = zf (z).

A closed subspace V of Dα is invariant if SV ⊂ V .

[f ]α(= [f ]) = span{zk f : k = 0,1,2, . . .} = Pf .

P dense ⊂ Dα ⇒ [1] = Dα.

Definition
A function f is cyclic (in Dα) if [f ] = Dα

⇔ ∃{pn}n∈N ∈ P : ||pnf − 1||α
n→∞→ 0⇒ pn → 1/f pw in D
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Examples and classical results

Z (f ) ∩ D = ∅+ f ∈ Hol(D)⇒ f cyclic in Dα ⇒ Z (f ) ∩ D = ∅.

Smirnov (’30s): H2 functions factorize as inner × outer.

Theorem (Beurling, ’49)

For H2 (α = 0), cyclic⇔ outer. Invariant subspaces generated by a
single inner function.

In other spaces, much known but still to be understood.
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Optimizational viewpoint

BCLSS (JdAM,’15) and FMS (CMFT,’14):
How cyclic is a function?

If we fix deg pn ≤ n, how fast can ‖pnf − 1‖2α → 0?
Optimizational viewpoint: Πn ort. proj

Πn : Dα → Vn = {pf : p ∈ Pn}.

⇒ ∃!Πn(1), best approximation to 1 in Vn.

Definition
The best approximant to 1/f of degree n is the p∗n ∈ P : p∗nf = Πn(1).

Now, cyclic⇔ ||p∗nf − 1||2α → 0⇔ p∗n(0)→ 1/f (0)

BFKSS: When f not cyclic, pnf → II(0), I “inner part of f ”.
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Solution

We solved these optimization problems:

Theorem (BCLSS, JdAM’15; FMS, CMFT’14)

p∗n(z) =
∑n

j=0 cjz j only solution to Mc = b where

c = (cj)
n
j=0, Mj,k =< z j f , zk f >α, bk =< 1, zk f >α .
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Applications to OPs

Later we discovered a relation with OPs: Let φj of degree j defined by:〈
φj f , φk f

〉
ω

= δj,k ,

and such that φ̂j(j) > 0.

Then we can obtain φj from pj and pj−1 since:

Theorem (BKLSS, JLMS’16)

pn(z) = f (0)
n∑

k=0

φk (0)φk (z)
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Plan

Today several related questions:
What happens on the boundary T?

Can we obtain a closed formula for pn in terms of a closed formula
for f?
Can we find pn faster than inverting M for each n?

YES, if f polynomial.
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Let us find g = 1− pnf ∈ Pn+2 for f (z) = (1− z)(2− z) = 2− 3z + z2.

g ⊥ z t (2− 3z + z2) t = 0, ...,n

⇒ 2ĝ(t)ωt − 3ĝ(t + 1)ωt+1 + ĝ(t + 2)ωt+2 = 0

ĝ(s)ωs satisfies a recurrence relation coming from f
(deg(f ) + 1-terms)
ĝ(s)ωs can be obtained from the zeros of f by a closed formula but
g has n + 3 degrees of freedom and n + 1 restrictions
Additional restrictions:

(1− pnf )(1) = (1− pnf )(2) = 1
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A general closed formula

Theorem
∃An = (A1,n, ...,Ad ,n)∗ (ind. of k): for k = 0, ...,n + d,

dk ,n =
1
ωk

d∑
i=1

Ai,nzk
i . (1)

An only solution to
EZ ,nAn = −v∗0 , (2)

where

EZ ,n,l,m =
n+d∑
k=0

zm
kzk

l
ωk

. (3)

So inverting a d × d matrix we can obtain a closed formula for all n.
Also, for pn and hence for φk .
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Corollary

Corollary

dist2(1,Pnf ) = −
d∑

i=1

Ai,n = v0E−1
Z ,nv∗0 .

In particular,
d∑

i=1

Ai,n ∈ [−1,0].

Also, if Z (f ) ⊂ D, then

dist2(1, [f ]) = v0K−1
Z v∗0 .

Notice EZ ,∞,l,m = kzm (zl).
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Wiener norm

Wiener norm is a measure of absolute convergence of the Taylor
series on the boundary:

A(T) = {f :
∑
|ak | <∞}.

Theorem

Let f ∈ P : Z (f ) ∩ D = ∅. ∃C ∈ R : ∀n ∈ N,

‖pnf − 1‖A ≤ C.

Hence, unif. bounded.
Perhaps, true if f ∈ A(T)?
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Boundary values

Theorem
Let Z (f ) ∩ D = ∅, z0 ∈ D\Z (f ). Then

(pnf − 1)(z0)→ 0 as n→∞.

Convergence is locally uniform.

So polynomials are “well behaved” on the boundary... Are there “badly
behaved” functions?
To be continued...
Coming up work BMS and Ivrii
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