Boundary behavior of optimal approximants

Catherine Bénéteau, Myrto Manolaki and Daniel Seco

USF / UCD / ICMAT

Madrid International Workshop on Operator Theory and Function Spaces, UAM, 16 ${ }^{\text {th }}$ Oct 2018

Spaces over the disc

Definition

Dirichlet-type space, D_{α}, is:

$$
\left\{f \in \operatorname{Hol}(\mathbb{D}): f(z)=\sum_{k \in \mathbb{N}} a_{k} z^{k},\|f\|_{\alpha}^{2}=\sum_{k=0}^{\infty}\left|a_{k}\right|^{2}(k+1)^{\alpha}<\infty\right\}
$$

Spaces over the disc

Definition

Dirichlet-type space, D_{α}, is:

$$
\left\{f \in \operatorname{Hol}(\mathbb{D}): f(z)=\sum_{k \in \mathbb{N}} a_{k} z^{k},\|f\|_{\alpha}^{2}=\sum_{k=0}^{\infty}\left|a_{k}\right|^{2}(k+1)^{\alpha}<\infty\right\}
$$

Today focus on these 3 examples:

Examples

$$
\alpha=-1, \mathcal{A}^{2}=\operatorname{Hol}(\mathbb{D}) \cap L^{2}(\mathbb{D})
$$

Spaces over the disc

Definition

Dirichlet-type space, D_{α}, is:

$$
\left\{f \in \operatorname{Hol}(\mathbb{D}): f(z)=\sum_{k \in \mathbb{N}} a_{k} z^{k},\|f\|_{\alpha}^{2}=\sum_{k=0}^{\infty}\left|a_{k}\right|^{2}(k+1)^{\alpha}<\infty\right\}
$$

Today focus on these 3 examples:

Examples

$$
\begin{aligned}
& \alpha=-1, \mathcal{A}^{2}=\operatorname{Hol}(\mathbb{D}) \cap L^{2}(\mathbb{D}) \\
& \alpha=0, \mathcal{H}^{2}=\operatorname{Hol}(\mathbb{D}) \cap L^{2}(\mathbb{T})
\end{aligned}
$$

Spaces over the disc

Definition

Dirichlet-type space, D_{α}, is:

$$
\left\{f \in \operatorname{Hol}(\mathbb{D}): f(z)=\sum_{k \in \mathbb{N}} a_{k} z^{k},\|f\|_{\alpha}^{2}=\sum_{k=0}^{\infty}\left|a_{k}\right|^{2}(k+1)^{\alpha}<\infty\right\}
$$

Today focus on these 3 examples:

Examples

$$
\begin{aligned}
& \alpha=-1, \mathcal{A}^{2}=\operatorname{Hol}(\mathbb{D}) \cap L^{2}(\mathbb{D}) \\
& \alpha=0, \mathcal{H}^{2}=\operatorname{Hol}(\mathbb{D}) \cap L^{2}(\mathbb{T}) \\
& \alpha=1, \mathcal{D}=\operatorname{Hol}(\mathbb{D}) \cap\{A(f(\mathbb{D}))<\infty\}
\end{aligned}
$$

Cyclicity and invariant subspaces

- The (forward) shift operator is bdd:

$$
S: D_{\alpha} \rightarrow D_{\alpha}: S f(z)=z f(z)
$$

A closed subspace V of D_{α} is invariant if $S V \subset V$.

Cyclicity and invariant subspaces

- The (forward) shift operator is bdd:

$$
S: D_{\alpha} \rightarrow D_{\alpha}: S f(z)=z f(z)
$$

A closed subspace V of D_{α} is invariant if $S V \subset V$.

$$
[f]_{\alpha}(=[f])=\overline{\operatorname{span}\left\{z^{k} f: k=0,1,2, \ldots\right\}}=\overline{\mathcal{P} f}
$$

\mathcal{P} dense $\subset D_{\alpha} \Rightarrow[1]=D_{\alpha}$.

Cyclicity and invariant subspaces

- The (forward) shift operator is bdd:

$$
S: D_{\alpha} \rightarrow D_{\alpha}: S f(z)=z f(z)
$$

A closed subspace V of D_{α} is invariant if $S V \subset V$.
0

$$
[f]_{\alpha}(=[f])=\overline{\operatorname{span}\left\{z^{k} f: k=0,1,2, \ldots\right\}}=\overline{\mathcal{P} f}
$$

\mathcal{P} dense $\subset D_{\alpha} \Rightarrow[1]=D_{\alpha}$.

Definition

A function f is cyclic (in D_{α}) if $[f]=D_{\alpha}$
$\Leftrightarrow \exists\left\{p_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}:\left\|p_{n} f-1\right\|_{\alpha} \xrightarrow{n \rightarrow \infty} 0$

Cyclicity and invariant subspaces

- The (forward) shift operator is bdd:

$$
S: D_{\alpha} \rightarrow D_{\alpha}: S f(z)=z f(z)
$$

A closed subspace V of D_{α} is invariant if $S V \subset V$.
0

$$
[f]_{\alpha}(=[f])=\overline{\operatorname{span}\left\{z^{k} f: k=0,1,2, \ldots\right\}}=\overline{\mathcal{P} f}
$$

\mathcal{P} dense $\subset D_{\alpha} \Rightarrow[1]=D_{\alpha}$.

Definition

A function f is cyclic (in D_{α}) if $[f]=D_{\alpha}$

$$
\Leftrightarrow \exists\left\{p_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}:\left\|p_{n} f-1\right\|_{\alpha} \xrightarrow{n \rightarrow \infty} 0 \Rightarrow p_{n} \rightarrow 1 / f \text { pw in } \mathbb{D}
$$

Examples and classical results

- $Z(f) \cap \overline{\mathbb{D}}=\emptyset+f \in \operatorname{Hol}(\bar{D}) \Rightarrow f$ cyclic in $D_{\alpha} \Rightarrow Z(f) \cap \mathbb{D}=\emptyset$.

Examples and classical results

- $Z(f) \cap \overline{\mathbb{D}}=\emptyset+f \in \operatorname{Hol}(\bar{D}) \Rightarrow f$ cyclic in $D_{\alpha} \Rightarrow Z(f) \cap \mathbb{D}=\emptyset$.

Smirnov ('30s): H^{2} functions factorize as inner \times outer.

Theorem (Beurling, '49)

For $\mathcal{H}^{2}(\alpha=0)$, cyclic \Leftrightarrow outer. Invariant subspaces generated by a single inner function.

Examples and classical results

- $Z(f) \cap \overline{\mathbb{D}}=\emptyset+f \in \operatorname{Hol}(\bar{D}) \Rightarrow f$ cyclic in $D_{\alpha} \Rightarrow Z(f) \cap \mathbb{D}=\emptyset$.

Smirnov ('30s): H^{2} functions factorize as inner \times outer.

Theorem (Beurling, '49)

For $\mathcal{H}^{2}(\alpha=0)$, cyclic \Leftrightarrow outer. Invariant subspaces generated by a single inner function.

In other spaces, much known but still to be understood.

Optimizational viewpoint

- BCLSS (JdAM,'15) and FMS (CMFT,'14): How cyclic is a function?

Optimizational viewpoint

- BCLSS (JdAM,'15) and FMS (CMFT,'14): How cyclic is a function?
If we fix $\operatorname{deg} p_{n} \leq n$, how fast can $\left\|p_{n} f-1\right\|_{\alpha}^{2} \rightarrow 0$?

Optimizational viewpoint

- BCLSS (JdAM,'15) and FMS (CMFT,'14): How cyclic is a function?
If we fix $\operatorname{deg} p_{n} \leq n$, how fast can $\left\|p_{n} f-1\right\|_{\alpha}^{2} \rightarrow 0$? Optimizational viewpoint: Π_{n} ort. proj

$$
\Pi_{n}: D_{\alpha} \rightarrow V_{n}=\left\{p f: p \in \mathcal{P}_{n}\right\}
$$

Optimizational viewpoint

- BCLSS (JdAM,'15) and FMS (CMFT,'14): How cyclic is a function?
If we fix $\operatorname{deg} p_{n} \leq n$, how fast can $\left\|p_{n} f-1\right\|_{\alpha}^{2} \rightarrow 0$?
Optimizational viewpoint: Π_{n} ort. proj

$$
\Pi_{n}: D_{\alpha} \rightarrow V_{n}=\left\{p f: p \in \mathcal{P}_{n}\right\}
$$

$\Rightarrow \exists!\Pi_{n}(1)$, best approximation to 1 in V_{n}.

Optimizational viewpoint

- BCLSS (JdAM,'15) and FMS (CMFT,'14): How cyclic is a function?
If we fix $\operatorname{deg} p_{n} \leq n$, how fast can $\left\|p_{n} f-1\right\|_{\alpha}^{2} \rightarrow 0$?
Optimizational viewpoint: Π_{n} ort. proj

$$
\Pi_{n}: D_{\alpha} \rightarrow V_{n}=\left\{p f: p \in \mathcal{P}_{n}\right\}
$$

$\Rightarrow \exists!\Pi_{n}(1)$, best approximation to 1 in V_{n}.

Definition

The best approximant to $1 / f$ of degree n is the $p_{n}^{*} \in \mathcal{P}: p_{n}^{*} f=\Pi_{n}(1)$.

Optimizational viewpoint

- BCLSS (JdAM,'15) and FMS (CMFT,'14): How cyclic is a function?
If we fix $\operatorname{deg} p_{n} \leq n$, how fast can $\left\|p_{n} f-1\right\|_{\alpha}^{2} \rightarrow 0$?
Optimizational viewpoint: Π_{n} ort. proj

$$
\Pi_{n}: D_{\alpha} \rightarrow V_{n}=\left\{p f: p \in \mathcal{P}_{n}\right\}
$$

$\Rightarrow \exists!\Pi_{n}(1)$, best approximation to 1 in V_{n}.

Definition

The best approximant to $1 / f$ of degree n is the $p_{n}^{*} \in \mathcal{P}: p_{n}^{*} f=\Pi_{n}(1)$.

- Now, cyclic $\Leftrightarrow\left\|p_{n}^{*} f-1\right\|_{\alpha}^{2} \rightarrow 0 \Leftrightarrow p_{n}^{*}(0) \rightarrow 1 / f(0)$

Optimizational viewpoint

- BCLSS (JdAM,'15) and FMS (CMFT,'14): How cyclic is a function?
If we fix $\operatorname{deg} p_{n} \leq n$, how fast can $\left\|p_{n} f-1\right\|_{\alpha}^{2} \rightarrow 0$?
Optimizational viewpoint: Π_{n} ort. proj

$$
\Pi_{n}: D_{\alpha} \rightarrow V_{n}=\left\{p f: p \in \mathcal{P}_{n}\right\}
$$

$\Rightarrow \exists!\Pi_{n}(1)$, best approximation to 1 in V_{n}.

Definition

The best approximant to $1 / f$ of degree n is the $p_{n}^{*} \in \mathcal{P}: p_{n}^{*} f=\Pi_{n}(1)$.

- Now, cyclic $\Leftrightarrow\left\|p_{n}^{*} f-1\right\|_{\alpha}^{2} \rightarrow 0 \Leftrightarrow p_{n}^{*}(0) \rightarrow 1 / f(0)$
- BFKSS: When f not cyclic, $p_{n} f \rightarrow \overline{I(0)}$, I "inner part of f ".

Solution

We solved these optimization problems:
Theorem (BCLSS, JdAM'15; FMS, CMFT'14)
$p_{n}^{*}(z)=\sum_{j=0}^{n} c_{j} z^{j}$ only solution to $M c=b$ where

$$
c=\left(c_{j}\right)_{j=0}^{n}, \quad M_{j, k}=<z^{j} f, z^{k} f>_{\alpha}, \quad b_{k}=<1, z^{k} f>_{\alpha}
$$

Applications to OPs

Later we discovered a relation with OPs: Let ϕ_{j} of degree j defined by:

$$
\left\langle\phi_{j} f, \phi_{k} f\right\rangle_{\omega}=\delta_{j, k},
$$

and such that $\hat{\phi}_{j}(j)>0$.

Applications to OPs

Later we discovered a relation with OPs: Let ϕ_{j} of degree j defined by:

$$
\left\langle\phi_{j} f, \phi_{k} f\right\rangle_{\omega}=\delta_{j, k},
$$

and such that $\hat{\phi}_{j}(j)>0$.
Then we can obtain ϕ_{j} from p_{j} and p_{j-1} since:
Theorem (BKLSS, JLMS'16)

$$
p_{n}(z)=\overline{f(0)} \sum_{k=0}^{n} \overline{\phi_{k}(0)} \phi_{k}(z)
$$

Plan

Today several related questions:

- What happens on the boundary \mathbb{T} ?

Today several related questions:

- What happens on the boundary \mathbb{T} ?
- Can we obtain a closed formula for p_{n} in terms of a closed formula for f ?

Today several related questions:

- What happens on the boundary \mathbb{T} ?
- Can we obtain a closed formula for p_{n} in terms of a closed formula for f ?
- Can we find p_{n} faster than inverting M for each n ?

Today several related questions:

- What happens on the boundary \mathbb{T} ?
- Can we obtain a closed formula for p_{n} in terms of a closed formula for f ?
- Can we find p_{n} faster than inverting M for each n ?

YES, if f polynomial.

Let us find $g=1-p_{n} f \in \mathcal{P}_{n+2}$ for $f(z)=(1-z)(2-z)=2-3 z+z^{2}$.

Let us find $g=1-p_{n} f \in \mathcal{P}_{n+2}$ for $f(z)=(1-z)(2-z)=2-3 z+z^{2}$.

$$
g \perp z^{t}\left(2-3 z+z^{2}\right) \quad t=0, \ldots, n
$$

Let us find $g=1-p_{n} f \in \mathcal{P}_{n+2}$ for $f(z)=(1-z)(2-z)=2-3 z+z^{2}$.

$$
g \perp z^{t}\left(2-3 z+z^{2}\right) \quad t=0, \ldots, n
$$

$$
\Rightarrow 2 \hat{g}(t) \omega_{t}-3 \hat{g}(t+1) \omega_{t+1}+\hat{g}(t+2) \omega_{t+2}=0
$$

Let us find $g=1-p_{n} f \in \mathcal{P}_{n+2}$ for $f(z)=(1-z)(2-z)=2-3 z+z^{2}$.

$$
\begin{gathered}
g \perp z^{t}\left(2-3 z+z^{2}\right) \quad t=0, \ldots, n \\
\Rightarrow 2 \hat{g}(t) \omega_{t}-3 \hat{g}(t+1) \omega_{t+1}+\hat{g}(t+2) \omega_{t+2}=0
\end{gathered}
$$

- $\hat{g}(s) \omega_{s}$ satisfies a recurrence relation coming from f (deg $(f)+1$-terms)

Let us find $g=1-p_{n} f \in \mathcal{P}_{n+2}$ for $f(z)=(1-z)(2-z)=2-3 z+z^{2}$.

$$
\begin{gathered}
g \perp z^{t}\left(2-3 z+z^{2}\right) \quad t=0, \ldots, n \\
\Rightarrow 2 \hat{g}(t) \omega_{t}-3 \hat{g}(t+1) \omega_{t+1}+\hat{g}(t+2) \omega_{t+2}=0
\end{gathered}
$$

- $\hat{g}(s) \omega_{s}$ satisfies a recurrence relation coming from f (deg $(f)+1$-terms)
- $\hat{g}(s) \omega_{s}$ can be obtained from the zeros of f by a closed formula but g has $n+3$ degrees of freedom and $n+1$ restrictions

Let us find $g=1-p_{n} f \in \mathcal{P}_{n+2}$ for $f(z)=(1-z)(2-z)=2-3 z+z^{2}$.

$$
g \perp z^{t}\left(2-3 z+z^{2}\right) \quad t=0, \ldots, n
$$

$$
\Rightarrow 2 \hat{g}(t) \omega_{t}-3 \hat{g}(t+1) \omega_{t+1}+\hat{g}(t+2) \omega_{t+2}=0
$$

- $\hat{g}(s) \omega_{s}$ satisfies a recurrence relation coming from f (deg $(f)+1$-terms)
- $\hat{g}(s) \omega_{s}$ can be obtained from the zeros of f by a closed formula but g has $n+3$ degrees of freedom and $n+1$ restrictions
- Additional restrictions:

$$
\left(1-p_{n} f\right)(1)=\left(1-p_{n} f\right)(2)=1
$$

A general closed formula

Theorem

$\exists A_{n}=\left(A_{1, n}, \ldots, A_{d, n}\right)^{*}$ (ind. of k): for $k=0, \ldots, n+d$,

$$
\begin{equation*}
d_{k, n}=\frac{1}{\omega_{k}} \sum_{i=1}^{d} A_{i, n} \overline{z_{i}^{k}} \tag{1}
\end{equation*}
$$

A general closed formula

Theorem

$\exists A_{n}=\left(A_{1, n}, \ldots, A_{d, n}\right)^{*}$ (ind. of k): for $k=0, \ldots, n+d$,

$$
\begin{equation*}
d_{k, n}=\frac{1}{\omega_{k}} \sum_{i=1}^{d} A_{i, n} \overline{z_{i}^{k}} \tag{1}
\end{equation*}
$$

A_{n} only solution to

$$
\begin{equation*}
E_{Z, n} A_{n}=-v_{0}^{*} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{Z, n, l, m}=\sum_{k=0}^{n+d} \frac{{\overline{z_{m}}}^{k} z_{l}^{k}}{\omega_{k}} . \tag{3}
\end{equation*}
$$

A general closed formula

Theorem

$\exists A_{n}=\left(A_{1, n}, \ldots, A_{d, n}\right)^{*}$ (ind. of k): for $k=0, \ldots, n+d$,

$$
\begin{equation*}
d_{k, n}=\frac{1}{\omega_{k}} \sum_{i=1}^{d} A_{i, n} \overline{z_{i}^{k}} \tag{1}
\end{equation*}
$$

A_{n} only solution to

$$
\begin{equation*}
E_{Z, n} A_{n}=-v_{0}^{*}, \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{Z, n, l, m}=\sum_{k=0}^{n+d} \frac{{\overline{z_{m}}}^{k} z_{l}^{k}}{\omega_{k}} \tag{3}
\end{equation*}
$$

So inverting a $d \times d$ matrix we can obtain a closed formula for all n. Also, for p_{n} and hence for ϕ_{k}.

Corollary

Corollary

$$
\operatorname{dist}^{2}\left(1, \mathcal{P}_{n} f\right)=-\sum_{i=1}^{d} A_{i, n}=v_{0} E_{Z, n}^{-1} v_{0}^{*}
$$

In particular,

$$
\sum_{i=1}^{d} A_{i, n} \in[-1,0]
$$

Also, if $Z(f) \subset \mathbb{D}$, then

$$
\operatorname{dist}^{2}(1,[f])=v_{0} K_{Z}^{-1} v_{0}^{*}
$$

Corollary

Corollary

$$
\operatorname{dist}^{2}\left(1, \mathcal{P}_{n} f\right)=-\sum_{i=1}^{d} A_{i, n}=v_{0} E_{Z, n}^{-1} v_{0}^{*}
$$

In particular,

$$
\sum_{i=1}^{d} A_{i, n} \in[-1,0]
$$

Also, if $Z(f) \subset \mathbb{D}$, then

$$
\operatorname{dist}^{2}(1,[f])=v_{0} K_{Z}^{-1} v_{0}^{*}
$$

Notice $E_{Z, \infty, l, m}=k_{z_{m}}\left(z_{l}\right)$.

Wiener norm

Wiener norm is a measure of absolute convergence of the Taylor series on the boundary:

$$
A(\mathbb{T})=\left\{f: \sum\left|a_{k}\right|<\infty\right\} .
$$

Wiener norm

Wiener norm is a measure of absolute convergence of the Taylor series on the boundary:

$$
A(\mathbb{T})=\left\{f: \sum\left|a_{k}\right|<\infty\right\} .
$$

Theorem

Let $f \in \mathcal{P}: Z(f) \cap \mathbb{D}=\emptyset . \exists C \in \mathbb{R}: \forall n \in \mathbb{N}$,

$$
\left\|p_{n} f-1\right\|_{A} \leq C .
$$

Wiener norm

Wiener norm is a measure of absolute convergence of the Taylor series on the boundary:

$$
A(\mathbb{T})=\left\{f: \sum\left|a_{k}\right|<\infty\right\} .
$$

Theorem

Let $f \in \mathcal{P}: Z(f) \cap \mathbb{D}=\emptyset . \exists C \in \mathbb{R}: \forall n \in \mathbb{N}$,

$$
\left\|p_{n} f-1\right\|_{A} \leq C .
$$

Hence, unif. bounded.

Wiener norm

Wiener norm is a measure of absolute convergence of the Taylor series on the boundary:

$$
A(\mathbb{T})=\left\{f: \sum\left|a_{k}\right|<\infty\right\} .
$$

Theorem

Let $f \in \mathcal{P}: Z(f) \cap \mathbb{D}=\emptyset . \exists C \in \mathbb{R}: \forall n \in \mathbb{N}$,

$$
\left\|p_{n} f-1\right\|_{A} \leq C .
$$

Hence, unif. bounded.
Perhaps, true if $f \in A(\mathbb{T})$?

Boundary values

Theorem

Let $Z(f) \cap \mathbb{D}=\emptyset, z_{0} \in \overline{\mathbb{D}} \backslash Z(f)$. Then

$$
\left(p_{n} f-1\right)\left(z_{0}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Convergence is locally uniform.

Boundary values

Theorem
Let $Z(f) \cap \mathbb{D}=\emptyset, z_{0} \in \overline{\mathbb{D}} \backslash Z(f)$. Then

$$
\left(p_{n} f-1\right)\left(z_{0}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Convergence is locally uniform.
So polynomials are "well behaved" on the boundary... Are there "badly behaved" functions?

Boundary values

Theorem
Let $Z(f) \cap \mathbb{D}=\emptyset, z_{0} \in \overline{\mathbb{D}} \backslash Z(f)$. Then

$$
\left(p_{n} f-1\right)\left(z_{0}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Convergence is locally uniform.
So polynomials are "well behaved" on the boundary... Are there "badly behaved" functions?
To be continued...
Coming up work BMS and Ivrii

