_____ Cálculo de primitivas (integrales indefinidas)

1. Calcule las siguientes primitivas:

a)
$$\int (x^2 + 3x) \left(5x^3 - \frac{8}{x^3}\right) dx$$
 b) $\int \left(e^x (e^x - e^{-x}) + \frac{1}{5x - 2}\right) dx$ c) $\int \left(3\sin(5x) - \frac{x}{2} - \frac{5}{1 + 4x^2}\right) dx$ d) $\int \left(\frac{x}{1 + x^2} + \frac{2}{(4x + 1)^2} + \frac{4}{\sqrt{1 - 2x^2}}\right) dx$

(Nota: pueden usarse las fórmulas $\int \frac{1}{x^2+a^2} dx = \frac{1}{a}\arctan(x/a) + C$; $\int \frac{1}{\sqrt{a^2-x^2}} = \arcsin(x/a) + C$).

2. Calcule las siguientes primitivas (integrando por partes):

a)
$$\int (x^2 - 2x)e^{-5x+3} dx$$
, b) $\int x \cos(5x) dx$, c) $\int e^{-x} \sin x dx$, d) $\int x \sqrt{x+1} dx$.

3. Usando la fórmula $\sin^2 x = 1 - \cos^2 x$, calcule $I = \int_0^{\pi/2} \sin^3 x \ dx$ y $J = \int_0^{\pi/2} \sin^7 x \ dx$.

4. Calcule las siguientes primitivas (usando el método de las fracciones simples):

$$\int \frac{x}{(x+1)(x-3)} dx, \quad \int \frac{x^3+1}{x^3+x} dx, \quad \int \frac{2}{(x-1)(x+3)^2} dx, \quad \int \frac{5x^2+5}{(x^2-1)(x^2+2x+2)} dx.$$

_____ Integral definida. Teorema fundamental del Cálculo

5. Halle f'(x) si

a)
$$f(x) = \int_0^x (1+t^2)^{-2} dt$$
, b) $f(x) = \int_0^{x^2} (1+t^2)^{-3} dt$, c) $f(x) = \int_{x^3}^{x^2} (1+t^2)^{-3} dt$

6. Compruebe que

$$\int_0^x |t| \, dt = \frac{1}{2} x \, |x| \qquad \text{para todo } x \in \mathbb{R}.$$

7. Supongamos que f es una función derivable en todo x y que satisface la ecuación

$$\int_0^x f(t) dt = -\frac{1}{2} + x^2 + x \operatorname{sen}(2x) + \frac{1}{2} \cos(2x) \quad \text{para todo} \quad x \ge 0.$$

Calcule $f(\pi/4)$ y $f'(\pi/4)$.

CÁLCULO DE INTEGRALES DEFINIDAS A TRAVÉS DE PRIMITIVAS

8. Calcule $\int_0^1 f(x) dx$, con f(x) igual a:

a)
$$\frac{1}{e^x + 4e^{-x}}$$
, b) $\frac{e^{2x}}{\sqrt{e^x + 1}}$, c) $\frac{4^x + 1}{2^x + 1}$, d) $\frac{x}{\sqrt{1 + x^4}}$.

(Nota: puede usar que $\int dx/\sqrt{x^2+1} = \ln(x+\sqrt{x^2+1}) + K$).

9. Calcule $\int_0^{\pi/4} f(x) dx$, con f(x) igual a:

a) $\operatorname{tg} x$ b) $\cos^4 x$ c) $\operatorname{tg}^2 x$ d) $\operatorname{sen}^5 x \cos^3 x$

Cálculo de áreas

- Calcule el área de la región limitada por
 - a) el eje X y la gráfica de $f(x) = \operatorname{sen} x$ en el intervalo $[0, 8\pi]$;
 - b) el intervalo $[0,\pi]$ del eje X y la gráfica de la función f(x)=|x| (la función "parte entera", o "suelo").
- 11. Halle el área de la región limitada por las gráficas de los pares de funciones que se indican:

a)
$$f(x) = \frac{2}{4x^2 + 1}$$
 y $g(x) = 2|x|$,

b)
$$f(x) = x(e^x + 1)$$
 y $g(x) = x + x^2 e^x$,

- 12. Dada $f(x) = x^2 2x + 7$, consideremos el triángulo curvilíneo T limitado entre las tangentes en x = 0 y x = 2 y la gráfica de f. Halle el área de T.
- Halle el área de la región acotada por la curva $y^2 = 3x$ y la recta 2y 2x + 3 = 0.
- **14.** Dados $a, b \in \mathbb{R}^+$, calcule el área de la elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Integrales impropias

Calcule las siguientes integrales impropias:

a)
$$\int_0^\infty e^{-5x} dx$$
,

b)
$$\int_0^1 \ln x \, dx$$

a)
$$\int_0^\infty e^{-5x} dx$$
, b) $\int_0^1 \ln x dx$, c) $\int_0^{\pi/2} \frac{1}{\cos^2 x} dx$.

Aplicaciones de la integral a las series

 2

16. Estudie la convergencia de las siguientes series mediante el criterio de la integral:

a)
$$\sum_{n=2}^{\infty} \frac{1}{n \log^2 n}$$
, b) $\sum_{n=2}^{\infty} \frac{1}{n \log n}$, c) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$,

$$b) \sum_{n=2}^{\infty} \frac{1}{n \log n},$$

$$c) \sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$